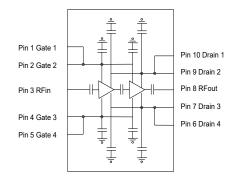


CMPA801B030F1

35 W, 8.0 - 12.0 GHz, GaN MMIC, Power Amplifier

Description

The CMPA801B030F1 is a packaged, 35 W HPA utilizing the high performance, 0.15 um GaN on SiC production process. The CMPA801B030F1 operates from 8 - 12 GHz and targets pulsed radar systems supporting both defense and commercial applications. With 2 stages of gain, this high performance amplifier provides 19 dB of large signal gain and 35% efficiency to support lower system DC power requirements and simplify system thermal management solutions. Packaged in a bolt-down, flange package, the CMPA801B030F1 also supports superior thermal management to allow for simplified system cooling requirements.


Package Types: 440213 PN's: CMPA801B030F1

Features

- 35 W typical P_{SAT}
- >36% typical power added efficiency
- 19 dB large signal gain
- High temperature operation

Applications

 Civil and military pulsed radar amplifiers

Note: Features are typical performance across frequency under 25 $^{\circ}$ C operation. Please reference performance charts for additional details.

Typical Performance Over 8.0 - 12.0 GHz ($T_c = 25$ °C)

Parameter	8.0 GHz	8.5 GHz	9.0 GHz	10.0 GHz	11.0 GHz	12.0 GHz	Units
Small Signal Gain ^{1,2}	27.2	28.0	26.2	25.0	25.0	25.4	dB
Output Power ^{1,3}	45.0	45.2	46.1	45.7	45.9	45.6	dBm
Power Gain ^{1,3}	19.0	19.2	20.1	19.7	19.9	19.6	dB
Power Added Efficiency ^{1,3}	40	40	44	36	37	36	%

Notes:

 $^{^{1}}V_{DD}$ = 28 V, I_{DQ} = 800 mA.

² Measured at $P_{IN} = -20$ dBm.

³ Measured at P_{IN} = 26 dBm and 100 μ s; duty cycle = 10%.

Absolute Maximum Ratings (Not Simultaneous) at 25 °C

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	84	V _{DC}	25 °C
Gate-Source Voltage	V _{GS}	-10, +2	V _{DC}	25 °C
Storage Temperature	T _{STG}	-55, +150	°C	
Maximum Forward Gate Current	I _G	12.9	mA	25 °C
Maximum Drain Current	I _{DMAX}	4.0	А	
Soldering Temperature	T _s	260	°C	
Junction Temperature	T _J	225	°C	MTTF > 1e6 Hours

Electrical Characteristics (Frequency = 8.0 GHz to 12.0 GHz Unless Otherwise Stated; T_c = 25 °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(TH)}	-2.6	-2.0	-1.6	V	$V_{DS} = 10 \text{ V}, I_{D} = 12.9 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-1.8	_	V _{DC}	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	12.9	15.48	-	А	V _{DS} = 6.0 V, V _{GS} = 2.0 V
Drain-Source Breakdown Voltage	V _{BD}	84	-	-	V	V _{GS} = -8 V, I _D = 12.9 mA

Note:

¹Scaled from PCM data.

Electrical Characteristics (Frequency = 8.0 GHz to 12.0 GHz Unless Otherwise Stated; T_c = 25 °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics ²						
Small Signal Gain	S21 ₁	-	26	-	dB	P _{IN} = -20 dBm, Freq = 8.0 - 12.0 GHz
Output Power	P _{OUT1}	-	45.0	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.0 \text{ GHz}$
Output Power	P _{OUT2}	-	45.2	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.5 \text{ GHz}$
Output Power	Роитз	-	46.1	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 9.0 \text{ GHz}$
Output Power	P _{OUT4}	-	45.7	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 10.0 \text{ GHz}$
Output Power	Роить	-	45.9	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 11.0 GHz$
Output Power	Р _{оит6}	-	45.6	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 12.0 \text{ GHz}$
Power Added Efficiency	PAE ₁	-	40	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.0 \text{ GHz}$
Power Added Efficiency	PAE ₂	-	40	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.5 \text{ GHz}$
Power Added Efficiency	PAE ₃	-	44	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 9.0 \text{ GHz}$
Power Added Efficiency	PAE ₄	-	36	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 10.0 \text{ GHz}$
Power Added Efficiency	PAE ₅	-	37	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 11.0 \text{ GHz}$
Power Added Efficiency	PAE ₆	-	36	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 12.0 \text{ GHz}$
Power Gain	G _{P1}	-	19.0	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.0 \text{ GHz}$
Power Gain	G _{P2}	-	19.2	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 8.5 \text{ GHz}$
Power Gain	G _{P3}	-	20.1	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 9.0 \text{ GHz}$
Power Gain	G _{P4}	-	19.7	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 10.0 \text{ GHz}$
Power Gain	G _{P5}	-	19.9	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 11.0 \text{ GHz}$
Power Gain	G _{P6}	-	19.6	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 26 \text{ dBm}, Freq = 12.0 \text{ GHz}$
Input Return Loss	S11	-	-10	-	dB	P _{IN} = -20 dBm, 8.0 - 12.0 GHz
Output Return Loss	S22	-	-7	-	dB	P _{IN} = -20 dBm, 8.0 - 12.0 GHz
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No Damage at All Phase Angles

Notes:

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions	
Operating Junction Temperature	T _J	144	°C	Pulse Width = 100 μs, Duty Cycle =10%,	
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.22	°C/W	$P_{DISS} = 48 \text{ W}, T_{CASE} = 85 ^{\circ}\text{C}$	
Operating Junction Temperature	T _J	179	°C	CW, P _{DISS} = 48 W, T _{CASE} = 85 °C	
Thermal Resistance, Junction to Case	$R_{\theta JC}$	1.95	°C/W		

¹Scaled from PCM data.

 $^{^{2}}$ Unless otherwise noted: Pulse width = 100 μ s, duty cycle = 10%.

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, pulse width = 100 μ s, duty cycle = 10%, $P_{IN} = 26 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

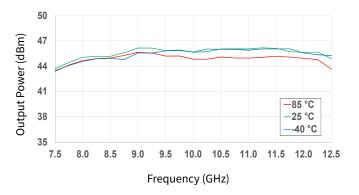


Figure 1. Output Power vs Frequency as a Function of Temperature

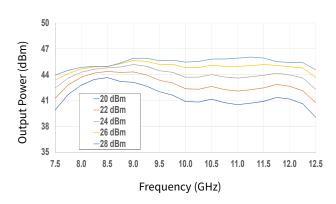


Figure 2. Output Power vs Frequency as a Function of Input Power

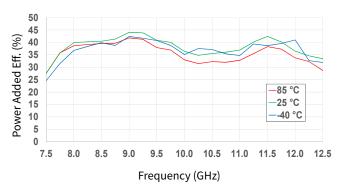


Figure 3. Power Added Eff. vs Frequency as a Function of Temperature

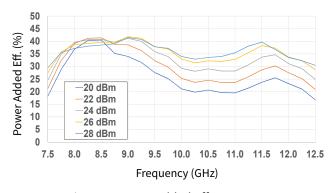


Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

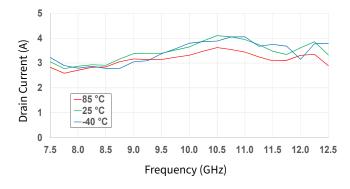


Figure 5. Drain Current vs Frequency as a Function of Temperature

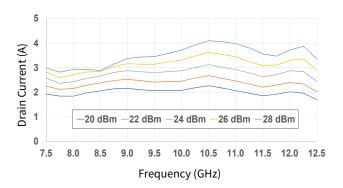


Figure 6. Drain Current vs Frequency as a Function of Input Power

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, pulse width = 100 μ s, duty cycle = 10%, $P_{IN} = 26 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

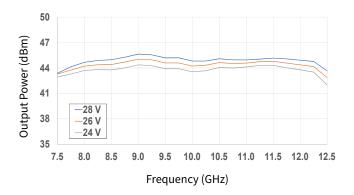


Figure 7. Output Power vs Frequency as a Function of V

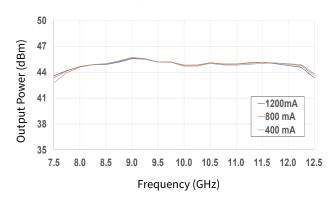


Figure 8. Output Power vs Frequency as a Function of I_{DO}

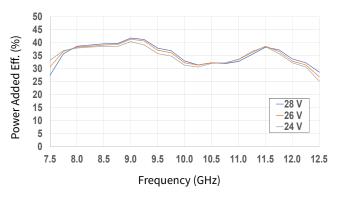


Figure 9. Power Added Eff. vs Frequency as a Function of V

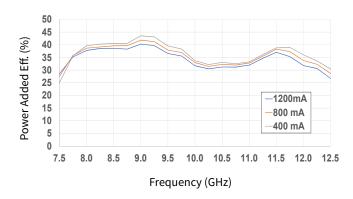


Figure 10. Power Added Eff. vs Frequency as a Function of I_{DO}

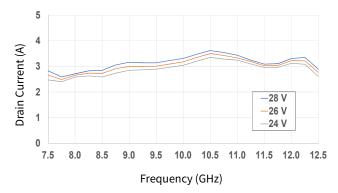


Figure 11. Drain Current vs Frequency as a Function of V_D

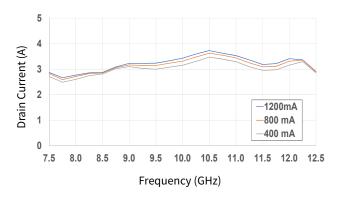


Figure 12. Drain Current vs Frequency as a Function of I_{DO}

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, pulse width = 100 μ s, duty cycle = 10%, $P_{IN} = 26 \text{ dBm}$, $T_{RASF} = +25 ^{\circ}\text{C}$

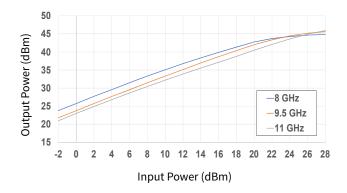


Figure 13. Output Power vs Input Power as a Function of Frequency

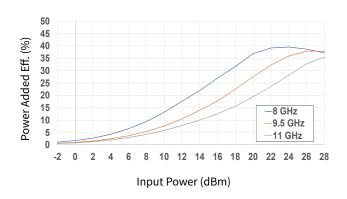


Figure 14. Power Added Eff. vs Input Power as a Function of Frequency

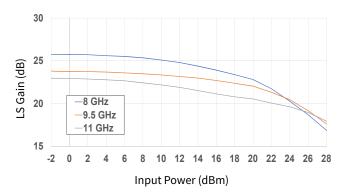


Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

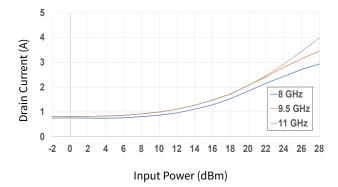


Figure 16. Drain Current vs Input Power as a Function of Frequency

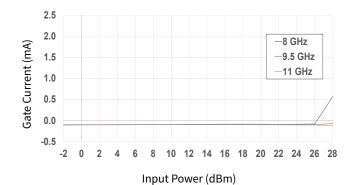


Figure 17. Gate Current vs Input Power as a Function of Frequency

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, pulse width = 100 μ s, duty cycle = 10%, $P_{IN} = 26 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

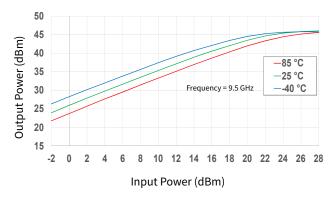


Figure 18. Output Power vs Input Power as a Function of Temperature

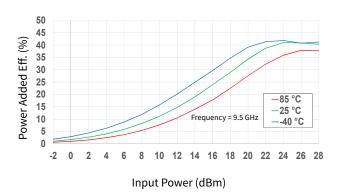


Figure 19. Power Added Eff. vs Input Power as a Function of Temperature

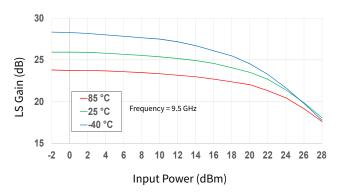


Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

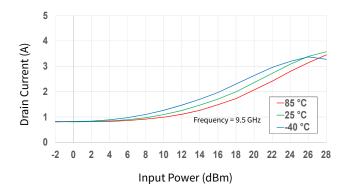


Figure 21. Drain Current vs Input Power as a Function of Temperature

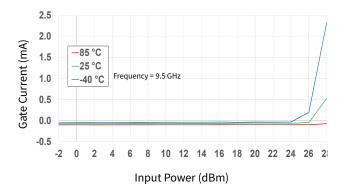


Figure 22. Gate Current vs Input Power as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, pulse width = 100 μ s, duty cycle = 10%, $P_{IN} = 26 \text{ dBm}$, $T_{BASF} = +25 ^{\circ}\text{C}$

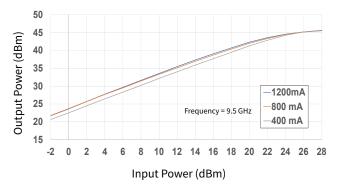


Figure 23. Output Power vs Input Power as a Function of I_{DO}

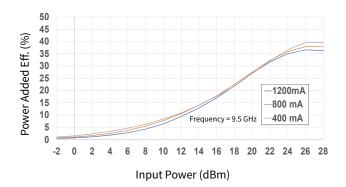


Figure 24. Power Added Eff. vs Input Power as a Function of I_{DO}

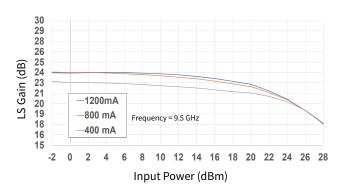


Figure 25. Large Signal Gain vs Input Power as a Function of I_{DO}

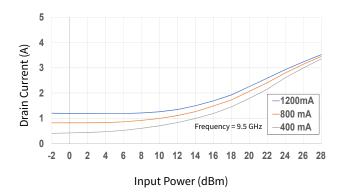


Figure 26. Drain Current vs Input Power as a Function of $I_{\rm DO}$

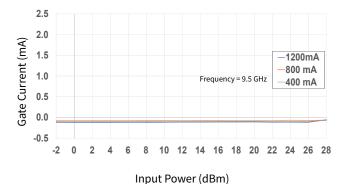


Figure 27. Gate Current vs Input Power as a Function of $\rm I_{\rm DQ}$

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, pulse width = $100 \text{ }\mu\text{s}$, duty cycle = 10%, $P_{IN} = 26 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

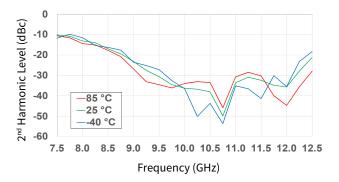


Figure 28. 2nd Harmonic vs Frequency as a Function of Temperature

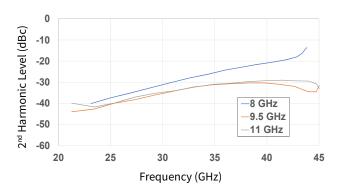


Figure 29. 2nd Harmonic vs Output Power as a Function of Frequency

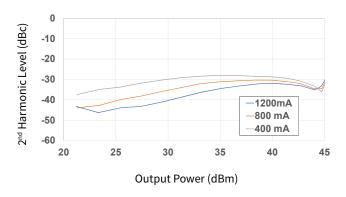


Figure 30. 2^{nd} Harmonic vs Output Power as a Function of I_{DO}

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25 \, ^{\circ}\text{C}$

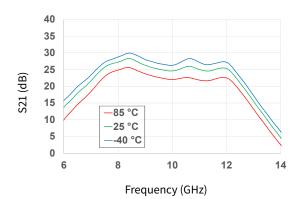


Figure 31. Gain vs Frequency as a Function of Temperature

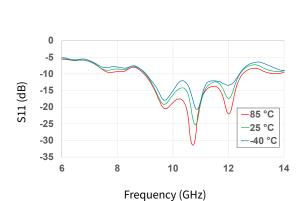


Figure 33. Input RL vs Frequency as a Function of Temperature

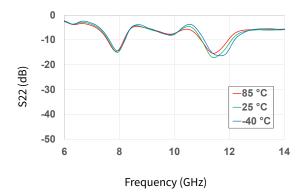


Figure 35. Output RL vs Frequency as a Function of Temperature

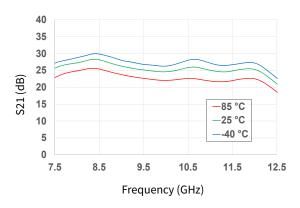


Figure 32. Gain vs Frequency as a Function of Temperature

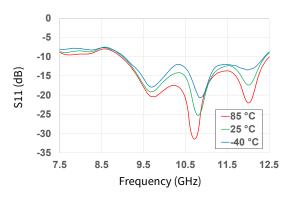


Figure 34. Input RL vs Frequency as a Function of Temperature

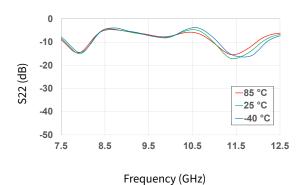


Figure 36. Output RL vs Frequency as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 800 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$

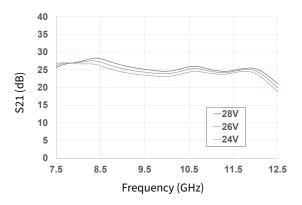


Figure 37. Gain vs Frequency as a Function of Voltage

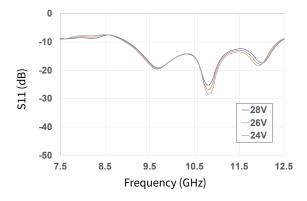


Figure 39. Input RL vs Frequency as a Function of Voltage

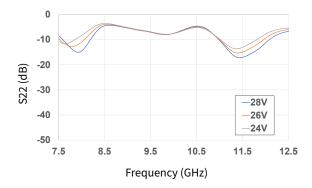


Figure 41. Output RL vs Frequency as a Function of Voltage

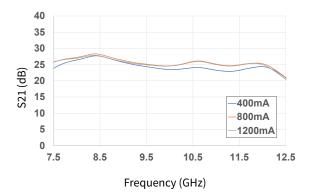


Figure 38. Gain vs Frequency as a Function of I_{DO}

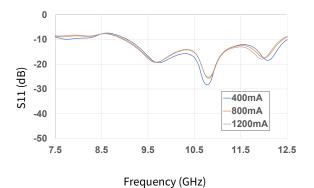
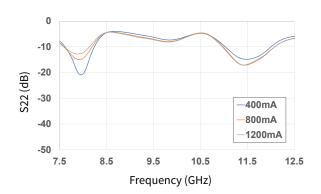
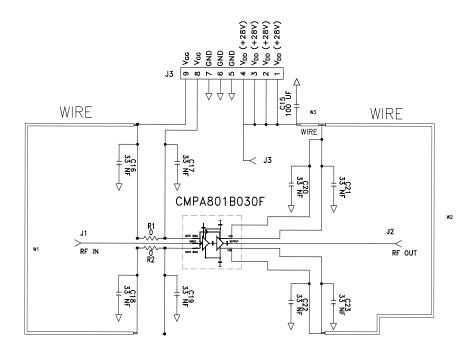
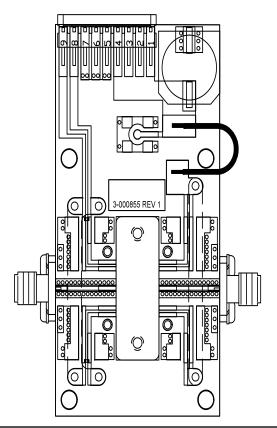


Figure 40. Input RL vs Frequency as a Function of I_{DO}

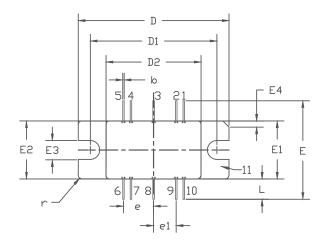



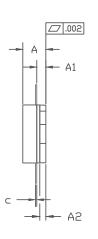

Figure 42. Output RL vs Frequency as a Function of I_{DO}

CMPA801B030F1-AMP Evaluation Board Schematic

CMPA801B030F1-AMP Evaluation Board Outline

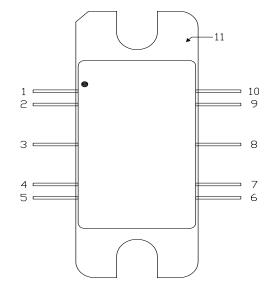
CMPA801B030F1-AMP Evaluation Board Bill of Materials


Designator	Description	Qty
C15	CAP ELECT 100 UF 80 V AFK SMD	1
C16 - C23	CAP, 33000 PF, 0805, 100 V X7R	8
C24	CAP 10 UF 16 V TANT 2312	1
R1, R2	RES 0.0 OHM 1/16 W 0402 SMD	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, R-HOLE, LBLUNT POST, 20 MIL	2
J4	CONN, SMB, STRAIGHT JACK RECEPTICLE, SMT, 50 OHM, AU PLATED	1
J3	HEADER RT > PLZ .1CEN LK 9POS	1
W1	WIRE, BLACK, 22 AWG ~ 1.5"	1
W2	WIRE, BLACK, 22 AWG ~ 1.75"	1
W3	WIRE, BLACK, 22 AWG ~ 3.0"	1
-	PCB, TEST FIXTURE, TACONICS RF35P, 20 MILS, 440208 PKG	1
-	2 - 56 SOC HD SCREW 1/16 SS	4
-	#2 SPLIT LOCKWASHER SS	4
Q1	MMIC CMPA801B030F1	1


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology	
Human Body Model	НВМ	1 B (≥ 500 V)	JEDEC JESD22 A114-D	
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C	

Product Dimensions CMPA801B030F1 (Package 440213)



PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 8: RF DUT 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 11: SDURCE

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

	INC	HES	MILLIM	ETERS	N	IOTES
DIM	MIN	MAX	MIN	MAX		
Α	0.148	0.168	3.76	4.27		
A1	0.055	0.065	1.40	1.65		
A2	0.035	0.045	0.89	1.14		
b	0.01	TYP	0.254	TYP		10x
С	0.007	0.009	0.18	0.23		
D	0.995	1.005	25.27	25.53		
D1	0.835	0.845	21.21	21.46		
D2	0.623	0.637	15.82	16.18		
Е	0.653	TYP	16.59 TYP			
E1	0.380	0.390	9.65	9.91		
E2	0.380	0.390	9.65	9.91		
E3	0.120	0.130	3.05	3.30		
E4	0.035	0.045	0.89	1.14	45°	CHAMFER
е	0.20	TYP	5.08	TYP		4x
e1	0.15) TYP	3.81	TYP		4x
L	0.115	0.155	2.92	3.94		10x
r	0.02	5 TYP	.635	TYP		3x

Pin	Desc.
1	Gate Bias for Stage 2
2	Gate Bias for Stage 2
3	RF_IN
4	Gate Bias for Stage 1
5	Gate Bias for Stage 1
6	Drain Bias
7	Drain Bias
8	RF_OUT
9	Drain Bias
10	Drain Bias
11	Source

Part Number System

CMPA801B030F1

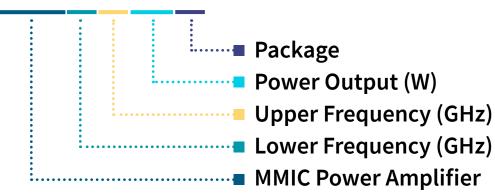


Table 1.

Parameter	Value	Units
Lower Frequency	8.0	GHz
Upper Frequency	11.0	GHz
Power Output	30	W
Package	Flange	-

Note:

Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
Е	4
F	5
G	6
Н	7
J	8
K	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA801B030F1	GaN HEMT	Each	CHAV8018030L1
CMPA801B030F1-AMP	Test Board with GaN MMIC Installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.