

CMPA5585030F

30 W, 5.5 - 8.5 GHz, GaN MMIC, Power Amplifier

Description

The CMPA5585030F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC is available in a 10 lead metal/ceramic flanged package for optimal electrical and thermal performance.

Package Type: 440213 PN: CMPA5585030F

Typical Performance Over 5.8 - 8.4 GHz ($T_c = 25^{\circ}$ C)

Parameter	5.8 GHz	6.4 GHz	7.2 GHz	7.9 GHz	8.4 GHz	Units
S21 ^{1,2}	25.9	23.8	26.5	24.5	26.7	4D
Power Gain ^{2,5}	22.3	19.0	20.9	21.6	21.2	dB
PAE ^{1,2,4,5}	24.7	20.7	20.3	22.6	22.9	%
ACLR ^{1,2,3,5}	-37	-42	-33	-34	-40	dBc

Notes (unless otherwise specified):

- ¹ At 25°C
- ² Measurements are performed using the test fixture AD-938516
- ³ Under OQPSK modulated signal, 1.6 Msps, PN23, Alpha Filter = 0.2
- ⁴ Power Added Efficiency = (P_{OUT} P_{IN}) / PDC
- ⁵ Measured at P_{OUT} = 41 dBm

Features

- 25 dB Small Signal Gain
- 30 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- Size 1.00 x 0.385 inches

Applications

- Point to Point Radio
- Communications Radar
- Satellite Communication Uplink

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	150	V	3F°C
Gate-source Voltage	V _{GS}	-10, +2	V_{DC}	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	10	mA	25°C
Soldering Temperature ¹	Ts	245	°C	
Screw Torque	τ	40	in-oz	
CGHV40180F Thermal Resistance, Junction to Case	R _{θJC}	2.16	°C/W	CW, 85°C, P _{DISS} = 66 W
Case Operating Temperature	T _c	-40, +150	°C	

Note:

Electrical Characteristics (Frequency = 5.5 GHz to 8.5 GHz unless otherwise stated; $T_c = 25^{\circ}\text{C}$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-2.8	-2.3	V	V _{DS} = 10 V, I _{DS} = 12.7 mA
Saturated Drain Current ²	I _{DS}	9.2	12.7	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V_{BD}	84	_	_	V	$V_{GS} = -8 \text{ V}, I_{DS} = 12.7 \text{ mA}$
RF Characteristics ³						
Small Signal Gain	S21	22.85	26	_		
Input Return Loss	S11	_	-7	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 285 \text{ mA}, P_{IN} = -20 \text{ dBm}$
Output Return Loss	S22	_	-1	_		
Output Mismatch Stress	VSWR	-	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 285 \text{ mA}$, $P_{OUT} = 43 \text{ dBm}$

Notes:

¹ Refer to the Application Note on soldering

 $^{^{\}scriptscriptstyle 1}\,\text{Measured}$ on-wafer prior to packaging

² Scaled from PCM data

³ Measured using network analyzer (Power = -20 dBm)

Electrical Characteristics Continued (Tc = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics ^{1,2,4,6}						
Power Added Efficiency at 5.8 GHz⁵	PAE ₁	19.0	25.8	_		
Power Added Efficiency at 6.4 GHz ⁵	PAE ₂	16.0	22.4	_		
Power Added Efficiency at 7.2 GHz⁵	PAE ₃	16.2	22.0	_	%	
Power Added Efficiency at 7.9 GHz⁵	PAE₄	18.0	23.9	_]	
Power Added Efficiency at 8.4 GHz ⁵	PAE₅	19.2	25.0	_		
Power Gain at 5.8 GHz	G _{P1}	18.25	22.4	_		
Power Gain at 6.4 GHz	G _{P2}	16.35	20.2	_]	
Power Gain at 7.2 GHz	G _{P3}	16.85	21.0	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 285 \text{ mA}, P_{IN} = 41 \text{ dBm}$
Power Gain at 7.9 GHz	G _{P4}	17.15	22.2	_		
Power Gain at 8.4 GHz	G _{P5}	17.65	21.8	_]	
OQPSK Linearity at 5.8 GHz	ACLR ₁	_	-42	-32		
OQPSK Linearity at 6.4 GHz	ACLR ₂	_	-44	-33		
OQPSK Linearity at 7.2 GHz	ACLR ₃	_	-34	-27.5	dBc	
OQPSK Linearity at 7.9 GHz	ACLR ₄	_	-37	-28		
OQPSK Linearity at 8.4 GHz	ACLR₅	_	-40	-32		

Notes:

- 1 At 25°C
- 2 Measurements are to be performed using the CMPA5585030F-AMP
- 3 Measured using network analyzer (Power = -20 dBm)
- 4 Under OQPSK modulated signal, 1.6 Msps, PN23, Alpha Filer = 0.2
- 5 Power Added Efficiency = (P_{OUT} P_{IN})/PDC
- 6 Fixture loss de-embedded using the following offset. The offset is subtracted from the input offset value and added to the output offset value.
 - a. 5.8 GHz 0.182 dB
 - b. 6.4 GHz 0.200 dB
 - c. 7.2 GHz 0.217 dB
 - d. 7.9 GHz 0.234 dB
 - e. 8.4 GHz 0.246 dB

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	нвм	2	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

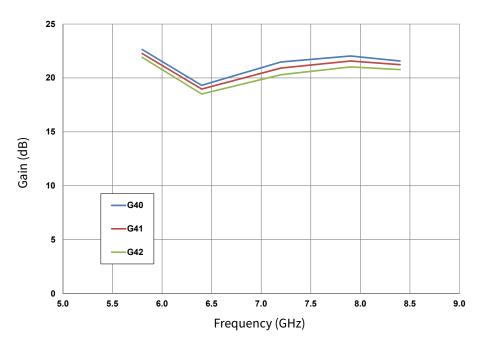


Figure 1. Gain vs. Frequency & Output Power OQPSK 1.6 Msps $V_{DD} = 28 \text{ V}, I_{DO} = 285 \text{ mA}$

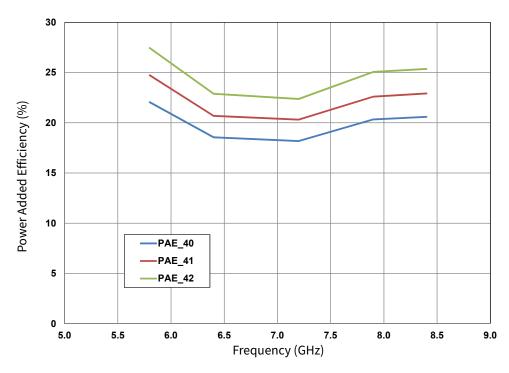
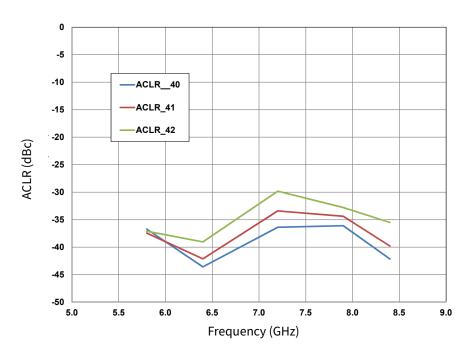
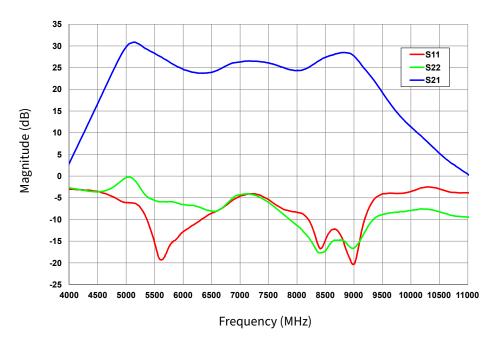




Figure 2. Power Added Efficiency vs. Frequency & Output Power OQPSK $1.6 \text{ Msps V}_{DD} = 28 \text{ V}, I_{DQ} = 285 \text{ mA}$

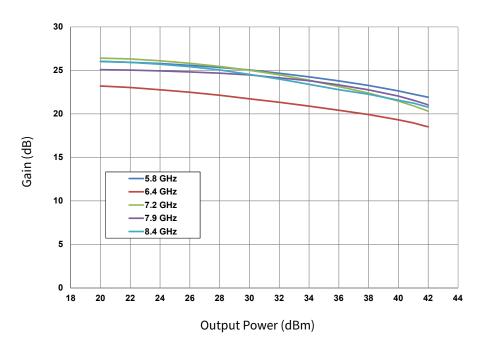


Figure 3. ACLR vs. Frequency & Output Power OQPSK 1.6 Msps $V_{DD} = 28 \text{ V}, I_{DQ} = 285 \text{ mA}$

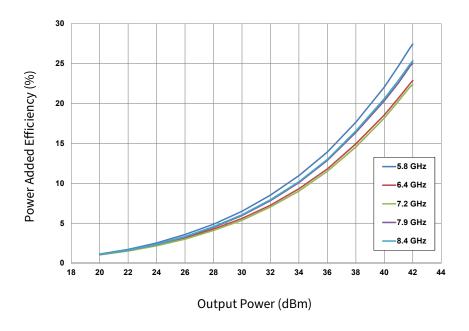


Figure 4. Typical S-Parameters $V_{DD} = 28 \text{ V}$, $I_{DO} = 285 \text{ mA}$

Figure 5. Gain vs. Output Power and Frequency OQPSK 1.6 Msps V_{DD} = 28 V, I_{DQ} = 285 mA

Figure 6. Power Added Efficiency vs. Output Power and Frequency OQPSK $1.6 \text{ Msps V}_{DD} = 28 \text{ V}, I_{DO} = 285 \text{ mA}$

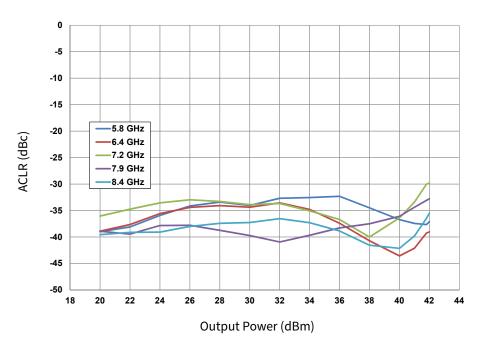


Figure 7. ACLR vs. Output Power and Frequency OQPSK 1.6 Msps $V_{DD} = 28 \text{ V}, I_{DO} = 285 \text{ mA}$

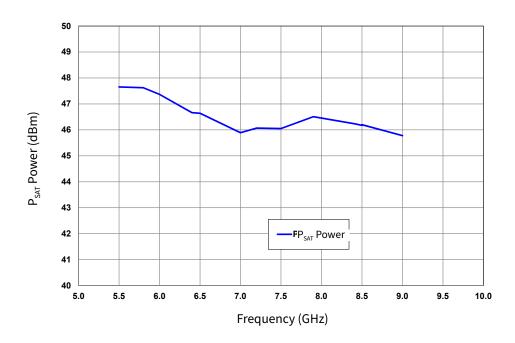
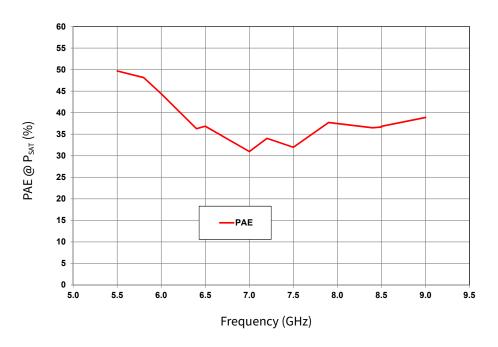
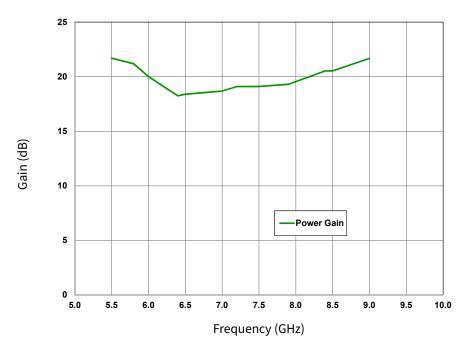




Figure 8. P_{SAT} Power vs. Frequency V_{DD} = 28 V, I_{DQ} = 800 mA, Pulsed Width = 100 μ s, Duty Cycle = 10%

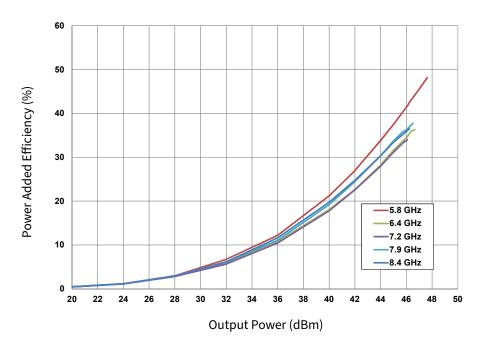


Figure 9. Power Added Efficiency @ Saturated Power vs. Frequency $V_{DD} = 28 \text{ V}$, $I_{DQ} = 800 \text{ mA}$, Pulsed Width = $100 \mu s$, Duty Cycle = 10%

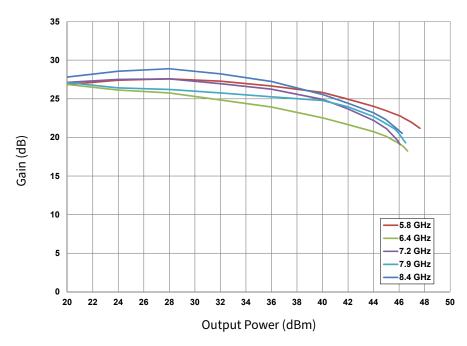


Figure 10. Gain @ Saturated Power vs. Frequency V_{DD} = 28 V, I_{DQ} = 800 mA, Pulsed Width = 100 μ s, Duty Cycle = 10%

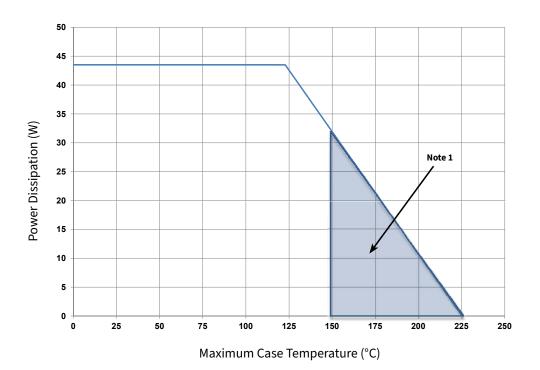
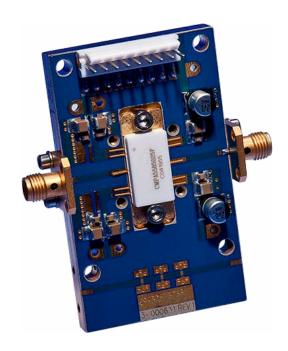

Figure 11. PAE vs. Output Power and Frequency V_{DD} = 28 V, I_{DQ} = 800 mA, Pulsed Width = 100 μ s, Duty Cycle = 10%

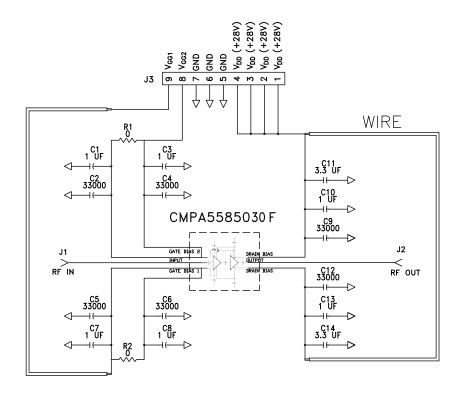
Figure 12. Gain vs. Output Power and Frequency $V_{DD} = 28 \text{ V}$, $I_{DQ} = 800 \text{ mA}$, Pulsed Width = $100 \mu s$, Duty Cycle = 10%

CMPA5585030F Power Dissipation De-rating Curve

Note:

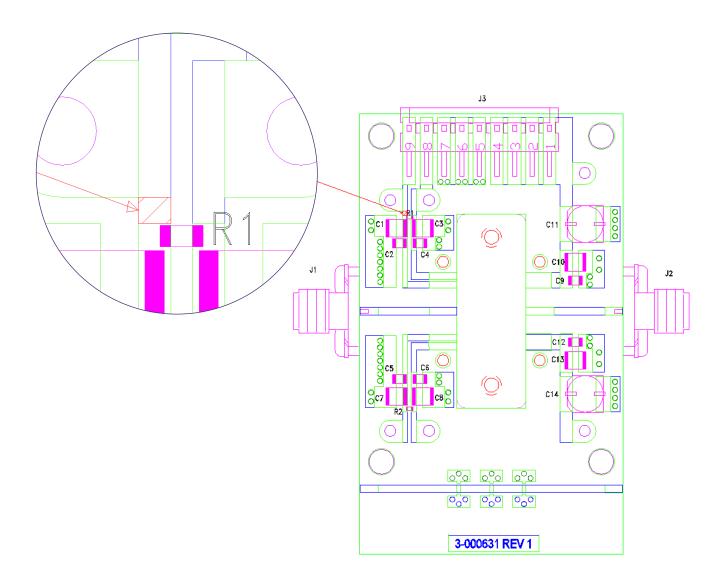

¹ Area exceeds Maximum Case Operating Temperature (See Page 2)

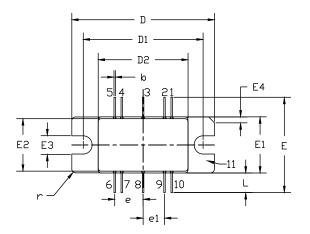
CMPA5585030F-AMP Application Circuit Bill of Materials

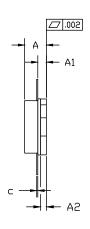

Designator	Description	Qty
C1, C3, C7, C8, C10, C13	CAP, 1.0μF, +/-10%, 1210, 100V, X7R	6
C2, C4, C5, C6, C9, C12	CAP, 33000pF, 0805, 100V, X7R	6
C11, C14	CAP ELECT 3.3µF 80V FK SMD	2
R1, R2	RES 0.0 OHM 1/16W 0402 SMD	2
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	CONNECTOR, HEADER, RT>PLZ .1CEN LK 9POS	1
	PCB, TACONIC, RF-35P-0200-CL1/CL1	1
Q1	CMPA5585030F	1

CMPA5585030F-AMP Demonstration Amplifier Circuit

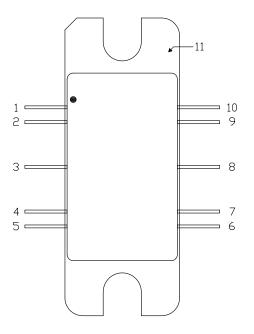
CMPA5585030F-AMP Demonstration Amplifier Circuit


CMPA5585030F-AMP Demonstration Amplifier Circuit Outline


CMPA5585030F-AMP Demonstration Amplifier Circuit


To configure the CMPA5585030F test fixture to enable independent VG1 / VG2 control of the device, a cut must be made to the microstrip line just above the R1 resistor as shown. Pin 9 will then supply VG1 and Pin 8 will supply VG2.

Product Dimensions CMPA5585030F (Package Type — 440213)


PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 8: RF DUT 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 11: SDURCE

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

	INC	HES	MILLIM	IETERS	NOTES
DIM	MIN	MAX	MIN	MAX	
Α	0.148	0.168	3.76	4.27	
A1	0.055	0.065	1.40	1.65	
A2	0.035	0.045	0.89	1.14	
b	0.01	TYP	0.254	TYP	10x
С	0.007	0.009	0.18	0.23	
D	0.995	1.005	25.27	25.53	
D1	0.835	0.845	21.21	21.46	
D2	0.623	0.637	15.82	16.18	
E	0.653	TYP	16.59	TYP	
E1	0.380	0.390	9.65	9.91	
E2	0.355	0.365	9.02	9.27	
E3	0.120	0.130	3.05	3.30	
E4	0.035	0.045	0.89	1.14	45° CHAMFER
е	0.20	TYP	5.08	TYP	4x
e1	0.150	O TYP	3.81	TYP	4x
L	0.115	0.155	2.92	3.94	10x
r	0.02	5 TYP	.635	TYP	3x

PIN	Qty		
1	Gate Bias for Stage 2		
2	Gate Bias for Stage 2		
3	RF In		
4	Gate Bias for Stage 1		
5	Gate Bias for Stage 1		
6	Drain Bias		
7	Drain Bias		
8	RF Out		
9	Drain Bias		
10	Drain Bias		
11	Source		

Part Number System



Table 1.

Parameter	Value	Units
Lower Frequency	5.5	GHz
Upper Frequency ¹	8.5	GHZ
Power Output	30	W
Package	Flange	_

Note:

Table 2.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA5585030F	GaN MMIC	Each	CMP ASSESSOR
CMPA5585030F-AMP	Test board with GaN MMIC installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.