

CMPA5259080S

80 W, 5.0 - 5.9 GHz, GaN MMIC, Power Amplifier

Description

The CMPA5259080S is a gallium nitride (GaN) high electron mobility transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity, and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier design approach enabling high power and power added efficiency to be achieved in a 7 mm x 7 mm surface mount (QFN package).

Features

Applications

amplifiers

- >48% typical power added efficiency
- 29 dB small signal gain
- 110 W typical P_{SAT}
- Operation up to 40 V
- High breakdown voltage
- High temperature operation

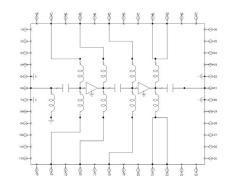
Note: Features are typical performance across frequency under 25 °C operation. Please reference performance charts for additional details.

Typical Performance Over 5.2 - 5.9 GHz ($T_c = 25$ °C)

Parameter	5.2 GHz	5.5 GHz	5.9 GHz	Units
Small Signal Gain ^{1,2}	29.0	30.5	28.1	dB
Output Power ^{1,3}	112.9	112.5	99.9	W
Power Gain ^{1,3}	21.4	21.4	21.0	dB
Power Added Efficiency ^{1,3}	47	49	47	%

Civil and military pulsed radar

Notes:


1

 $^{1}V_{DD} = 40 \text{ V}, \text{ I}_{DO} = 350 \text{ mA}.$

² Measured at $P_{IN} = -20$ dBm. ³ Measured at $P_{IN} = 29$ dBm and 500 µs, duty cycle = 20%.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Package Types: 7 x 7 QFN

PN's: CMPA5259080S

Absolute Maximum Ratings (Not Simultaneous) at 25 °C

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	V _{DC}	25 °C
Gate-Source Voltage	V _{gs}	-10, +2	V _{DC}	25 °C
Storage Temperature	T _{stg}	-55, +150	°C	
Maximum Forward Gate Current	۱ _G	23.2	mA	25 °C
Maximum Drain Current	I _{DMAX}	4.8	A	
Soldering Temperature	T _s	260	°C	

Electrical Characteristics (Frequency = 5.2 GHz to 5.9 GHz Unless Otherwise Stated; T_c = 25 °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics							
Gate Threshold Voltage	V _{gs(th)}	-3.6	-3.1	-2.4	V	$V_{\rm DS} = 10 \text{ V}, \text{ I}_{\rm D} = 23.2 \text{ mA}$	
Gate Quiescent Voltage	V _{GS(Q)}	-	-2.7	-	V _{DC}	$V_{_{DD}} = 40 \text{ V}, I_{_{DQ}} = 350 \text{ mA}$	
Saturated Drain Current ¹	I _{DS}	16.7	23.2	-	А	$V_{\rm DS} = 6.0 \text{ V}, V_{\rm GS} = 2.0 \text{ V}$	
Drain-Source Breakdown Voltage	V _{bd}	100	-	-	V	$V_{gs} = -8 V, I_{p} = 23.2 mA$	
RF Characteristics ^{2,3}							
Small Signal Gain	S21 ₁	-	27	-	dB	$P_{IN} = -20 \text{ dBm}, \text{ Freq} = 5.2 - 5.9 \text{ GHz}$	
Output Power	P _{OUT1}	-	105	-	W	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = 29 dBm, Freq = 5.2 GHz	
Output Power	P _{OUT2}	-	102	-	W	$V_{_{DD}}$ = 40 V, $I_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = 29dBm, Freq = 5.5 GHz	
Output Power	P _{out3}	-	112	-	W	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, \text{ Freq} = 5.9 \text{ GHz}$	
Power Added Efficiency	PAE ₁	-	50	-	%	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, \text{ Freq} = 5.2 \text{ GHz}$	
Power Added Efficiency	PAE ₂	-	48	-	%	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, \text{ Freq} = 5.5 \text{ GHz}$	
Power Added Efficiency	PAE ₃	-	48	-	%	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, \text{ Freq} = 5.9 \text{ GHz}$	
Power Gain	G _P	-	21	-	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, \text{ Freq} = 5.2 \text{ GHz}$	
Power Gain	G _P	-	21	-	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, \text{ Freq} = 5.5 \text{ GHz}$	
Power Gain	G _P	-	22	-	dB	$V_{DD} = 40 \text{ V}, I_{DQ} = 350 \text{ mA}, P_{IN} = 29 \text{ dBm}, \text{ Freq} = 5.9 \text{ GHz}$	
Input Return Loss	S11	-	-10	-	dB	P _{IN} = -20 dBm, 5.2 - 5.9 GHz	
Output Return Loss	S22	-	-4	-	dB	P _{IN} = -20 dBm, 5.2 - 5.9 GHz	
Output Mismatch Stress	VSWR	-	-	3:1	Ψ	No Damage at All Phase Angles	

Notes:

¹ Scaled from PCM data.

² Measured in CMPA5259080S high volume test fixture at 5.2, 5.5 and 5.9 GHz and may not show the full capability of the device due to source

inductance and thermal performance.

³ Unless otherwise noted: Pulse width = 25 μ s, duty cycle = 1%.

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	T,	225	°C	
Thermal Resistance, Junction to Case (Packaged) ¹	R _{ejc}	0.95	°C/W	Pulse Width = 500 μ s, Duty Cycle = 20%

Note:

2

¹ Simulated for the CMPA5259080S at P_{DISS} = 120 W.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

Rev. 0.2, SEPTEMBER 2023

Test conditions unless otherwise noted: $V_{D} = 40 \text{ V}$, $I_{D0} = 350 \text{ mA}$, pulse width = 500 μ s, duty cycle = 20%, $P_{IN} = 29 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$

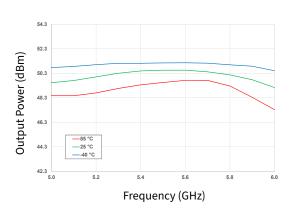


Figure 1. Output Power vs Frequency as a Function of Temperature

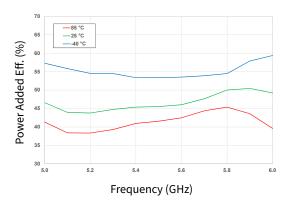


Figure 3. Power Added Eff. vs Frequency as a Function of Temperature



Figure 5. Drain Current vs Frequency as a Function of Temperature

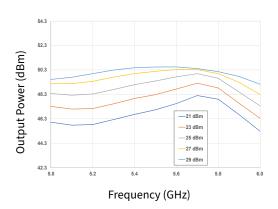


Figure 2. Output Power vs Frequency as a Function of Input Power

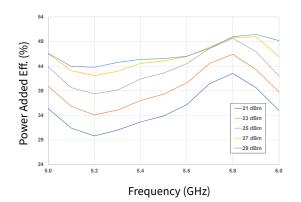


Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

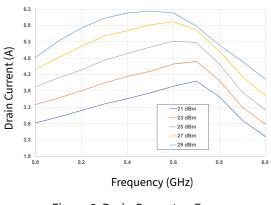
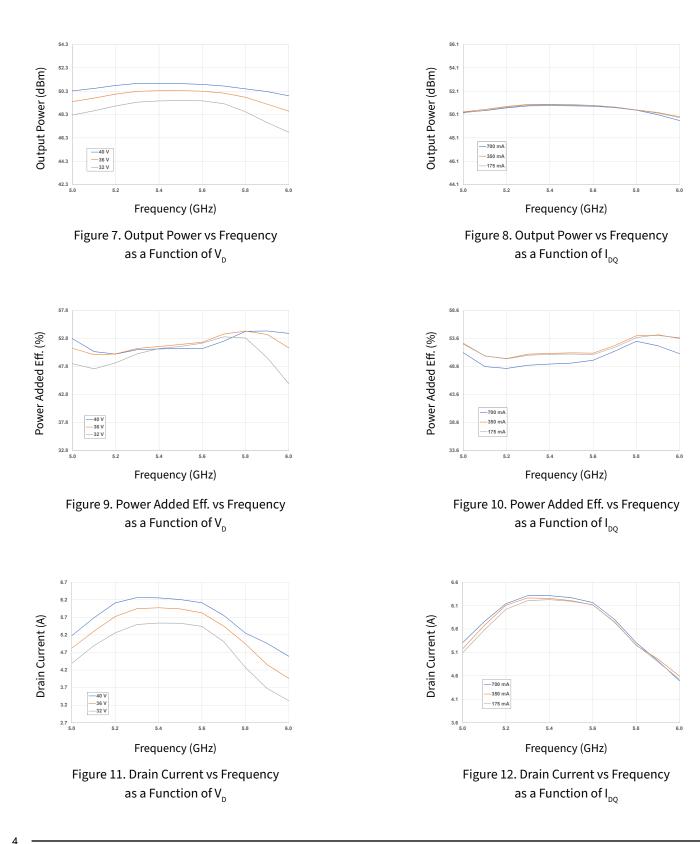
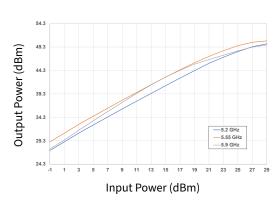
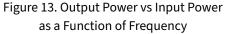
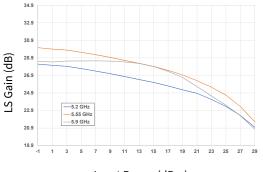



Figure 6. Drain Current vs Frequency as a Function of Input Power

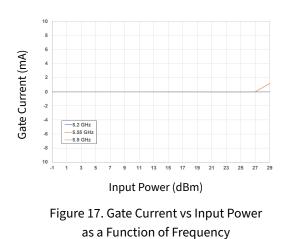
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.


Test conditions unless otherwise noted: $V_{D} = 40 \text{ V}$, $I_{DQ} = 350 \text{ mA}$, pulse width = 500 μ s, duty cycle = 20%, $P_{IN} = 29 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$




MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Test conditions unless otherwise noted: $V_{D} = 40 \text{ V}$, $I_{D0} = 350 \text{ mA}$, pulse width = 500 μ s, duty cycle = 20%, $P_{IN} = 29 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$



Input Power (dBm)

Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

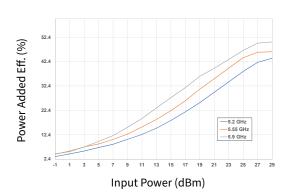


Figure 14. Power Added Eff. vs Input Power as a Function of Frequency

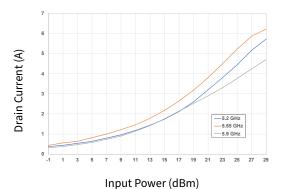
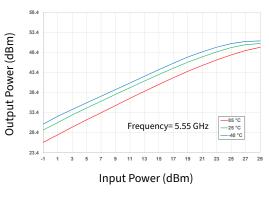
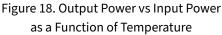
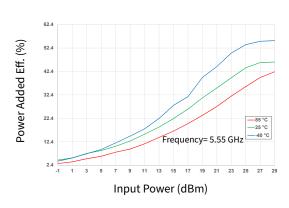
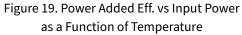
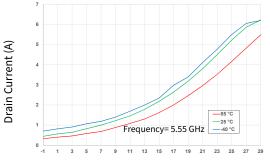




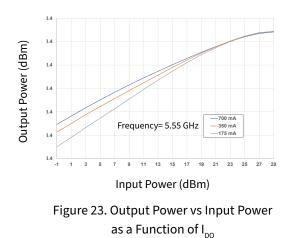
Figure 16. Drain Current vs Input Power as a Function of Frequency




MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.


For further information and support please visit: <u>https://www.macom.com/support</u>

Test conditions unless otherwise noted: V_{D} = 40 V, I_{DQ} = 350 mA, pulse width = 500 μ s, duty cycle = 20%, P_{IN} = 29 dBm, T_{BASE} = +25 °C



Input Power (dBm)

Figure 21. Drain Current vs Input Power as a Function of Temperature

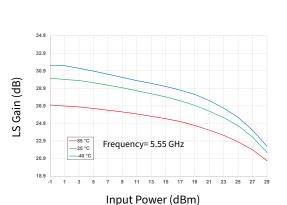
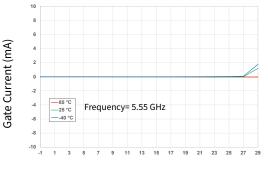
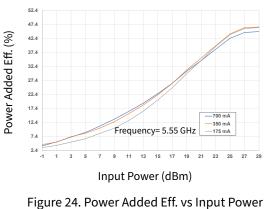
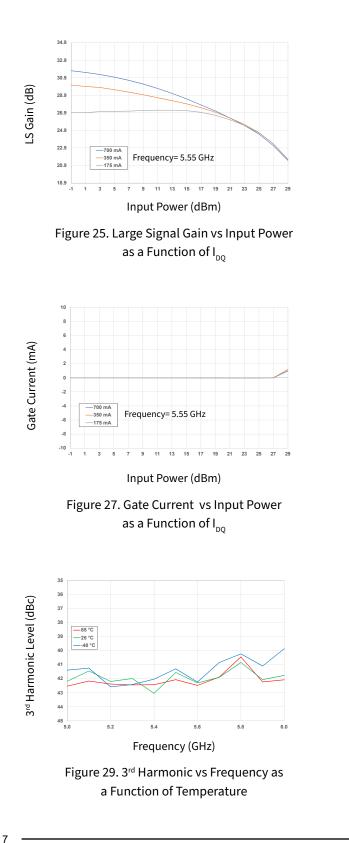
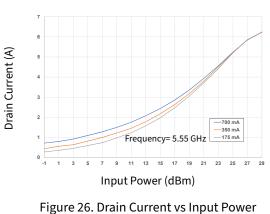




Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

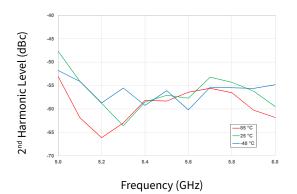
Input Power (dBm)

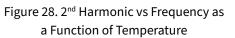
Figure 22. Gate Current vs Input Power as a Function of Temperature

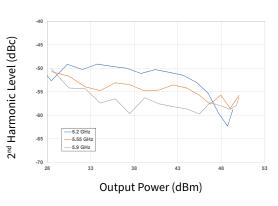


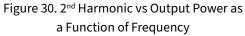

as a Function of I_{DQ}

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



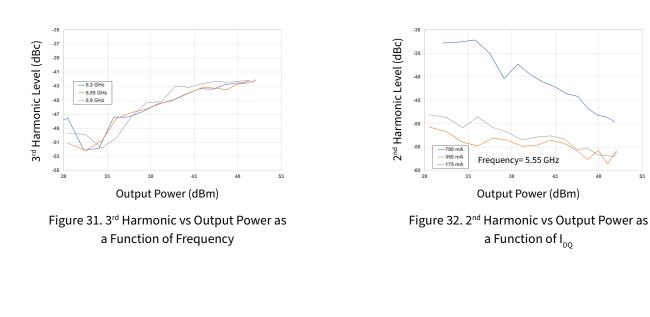

Test conditions unless otherwise noted: V_{D} = 40 V, I_{D0} = 350 mA, pulse width = 500 μ s, duty cycle = 20%, P_{IN} = 29 dBm, T_{BASE} = +25 °C





as a Function of I_{DQ}

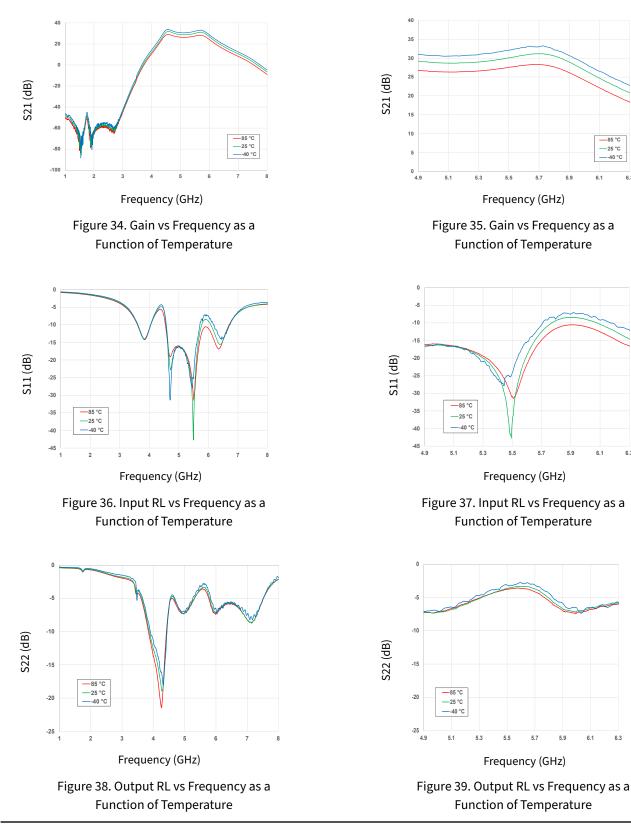
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.


8

53

Typical Performance of the CMPA5259080S

Test conditions unless otherwise noted: $V_D = 40 V$, $I_{DQ} = 350 mA$, pulse width = 500 μ s, duty cycle = 20%, $P_{IN} = 29 dBm$, $T_{BASE} = +25 °C$


-25 °C

6 1

6.3

Typical Performance of the CMPA5259080S

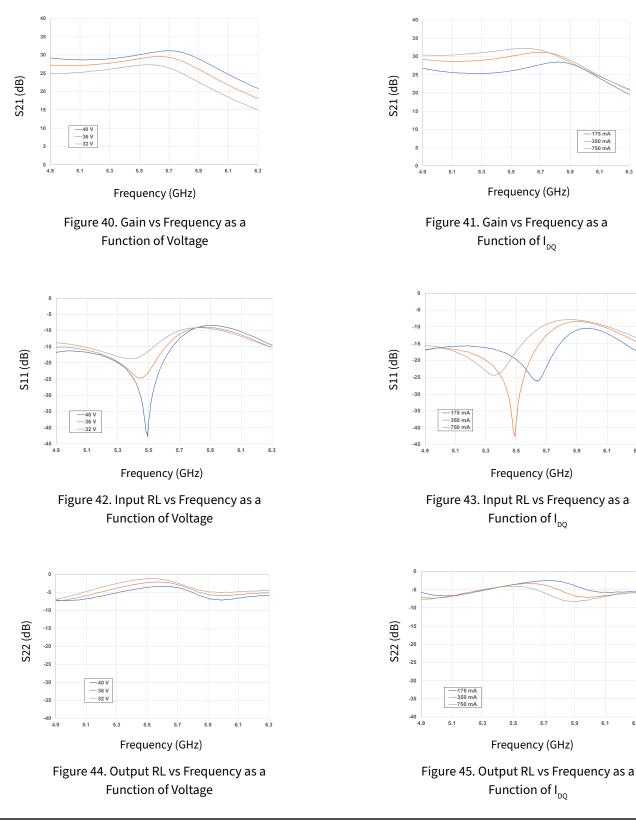
Test conditions unless otherwise noted: $V_{_{D}}$ = 40 V, $I_{_{DQ}}$ = 350 mA, $P_{_{IN}}$ = -20 dBm, $T_{_{BASE}}$ = +25 °C

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit:

9

6.3

6.1



175 m/ 350 m/

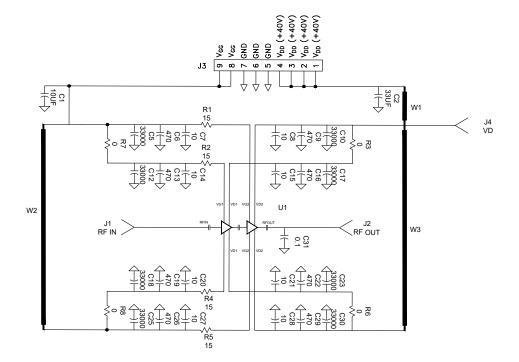
6.1

Typical Performance of the CMPA5259080S

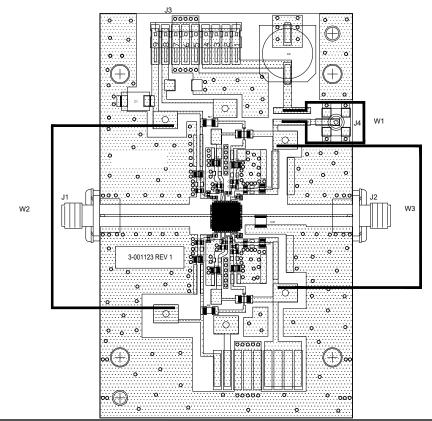
Test conditions unless otherwise noted: V_D = 40 V, I_{DQ} = 350 mA, P_{IN} = -20 dBm, T_{BASE} = +25 °C

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support


10

5.9


6.3

CMPA5259080S-AMP1 Demonstration Amplifier Schematic

CMPA5259080S-AMP1 Demonstration Amplifier Circuit Outline

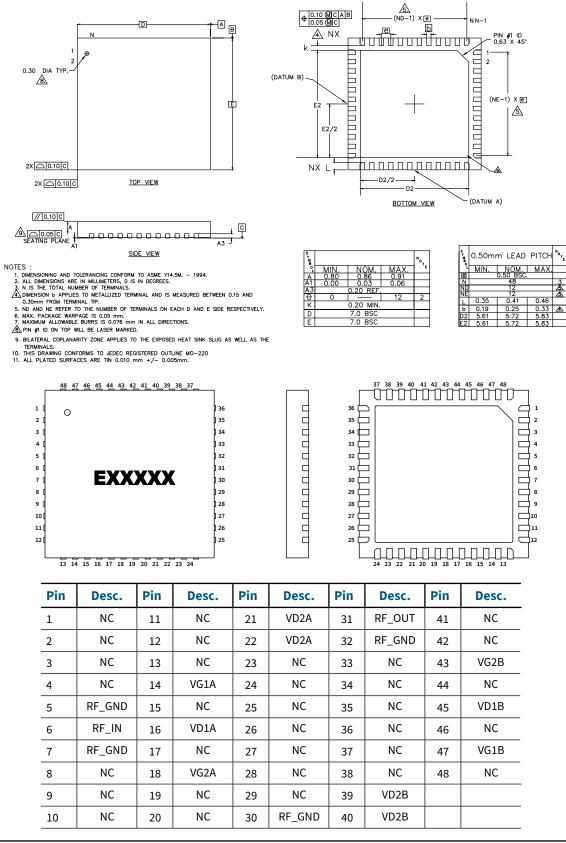
11 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

CMPA5259080S-AMP1 Demonstration Amplifier Circuit Bill of Materials

Designator	Description		
C7, C8, C14, C15, C20, C21, C27, C28	CAP, 10 pF, +/-5%, pF, 200 V, 0402	8	
C6, C9, C13, C16, C29, C22, C26, C29	CAP, 470 pF, 5%, 100 V, 0603, X	8	
C5, C10, C12, C17, C18, C23, C25, C30	CAP, 33000 pF, 0805, 100 V, X7R	8	
C2	CAP, 33 UF, 20%, G CASE	1	
C1	CAP, 10 UF, 16 V, TANTALUM	1	
C31	CAP, 0.1 pF, ATC 100 B	1	
R1, R2, R4, R5	RES 15 OHM, +/-1%, 1/16 W, 0402	4	
R3, R6, R7, R8	RES 0.0 OHM 1/16 W 0402 SMD	2	
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20 MIL	2	
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1	
J3	HEADER RT>PLZ .1CEN LK 9POS	1	
W2, W3	WIRE, BLACK, 22 AWG ~ 2.5"	2	
W1	WIRE, BLACK, 22 AWG ~ 3.0"	1	
	PCB, TEST FIXTURE, RF-35 TC, 0.010 THK, 7x7 AIR CAVITY QFN, EVAL BOARD	1	
	2-56 SOC HD SCREW 3/16 SS	4	
	#2 SPLIT LOCKWASHER SS	4	
U1	CMPA5259080S	1	

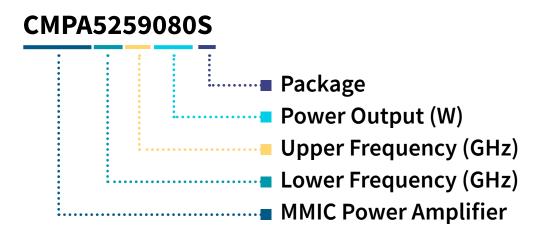
Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1 B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C


Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

¹² MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit:


Product Dimensions CMPA5259080S (Package 7 x 7 QFN)

13 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Part Number System

Table 1.

Parameter	Value	Units
Lower Frequency	5.2	GHz
Upper Frequency	5.9	GHz
Power Output	80	W
Package	Surface Mount	-

Note:

Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value		
A	0		
В	1		
С	2		
D	3		
E	4		
F	5		
G	6		
н	7		
J	8		
К	9		
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz		

14 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA5259080S	GaN HEMT	Each	CONSCIENCE PROFESSIONE
CMPA5259080S-AMP1	Test Board with GaN MMIC Installed	Each	

15 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 0.2, SEPTEMBER 2023

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY. EXPRESS OR IMPLIED. RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 0.2, SEPTEMBER 2023 For further information and support please visit: