

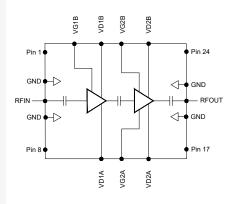
CMPA5259025S

40 W, 5.2 - 5.9 GHz, GaN MMIC, Power Amplifier

Description

The CMPA5259025S is a gallium-nitride (GaN) HEMT-based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide allowing the technology to offer greater power density and wider bandwidths compared to Si and GaAs devices. This MMIC uses a two-stage reactively matched amplifier design approach enabling wide bandwidths to be achieved in a small-footprint, while maintaining high gain and efficiency. Operating at 28 V, the 40 W pulsed output power is designed primarily for use as an output stage for highly integrated AESA radar type architectures. In addition, the high gain makes it suitable as a drive stage for a multi-device line-up using the high power IMFETs as the final stage.

Package Types: 5 x 5 QFN PN's: CMPA5259025S


Features

- >53% typical power added efficiency
- 29 dB small signal gain
- 40 W typical P_{SAT}
- Operation up to 28 V
- High breakdown voltage
- High temperature operation

Note: Features are typical performance across frequency under 25 °C operation. Please reference performance charts for additional details.

Applications

Civil and military pulsed radar amplifiers

Typical Performance Over 5.2 - 5.9 GHz ($T_c = 25$ °C)

Parameter	5.2 GHz	5.55 GHz	5.9 GHz	Units
Small Signal Gain ^{1,2}	30.0	29.4	30.0	dB
Output Power ^{1,3}	46.2	46.0	46.0	dBm
Power Gain ^{1,3}	25.2	25.0	25.0	dB
Power Added Efficiency ^{1,3}	54	54	53	%

 $^{{}^{1}}V_{DD} = 28 \text{ V}, I_{DO} = 250 \text{ mA}.$

 $^{^{2}}$ Measured at P_{IN} = -20 dBm. 3 Measured at P_{IN} = 21 dBm and 150 μ s; duty cycle = 20%.

Absolute Maximum Ratings (Not Simultaneous) at 25 °C

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	84	V _{DC}	25 °C
Gate-Source Voltage	V _{GS}	-10, +2	V _{DC}	25 °C
Storage Temperature	T _{stg}	-55, +150	°C	
Maximum Forward Gate Current	l _g	9.6	mA	25 °C
Maximum Drain Current	I _{DMAX}	3.24	Α	
Soldering Temperature	T _s	260	°C	

Electrical Characteristics (Frequency = 5.2 GHz to 5.9 GHz Unless Otherwise Stated; T_c = 25 °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(TH)}	-2.6	-2.0	-1.6	V	$V_{DS} = 10 \text{ V, } I_{D} = 9.6 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-1.8	-	V _{DC}	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	9.60	11.52	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	84	-	-	V	$V_{GS} = -8 \text{ V}, I_{D} = 9.6 \text{ mA}$
RF Characteristics ^{2,3}						
Small Signal Gain	S21 ₁	-	29.5	-	dB	P _{IN} = -20 dBm, Freq = 5.2 - 5.9 GHz
Output Power	P _{OUT1}	-	46.2	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, Freq = 5.2 \text{ GHz}$
Output Power	P _{OUT2}	_	46.0	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, Freq = 5.55 \text{ GHz}$
Output Power	Роитз	-	46.0	-	dBm	V _{DD} = 28 V, I _{DQ} = 250 mA, P _{IN} = 21 dBm, Freq = 5.9 GHz
Power Added Efficiency	PAE ₁	_	54	-	%	V _{DD} = 28 V, I _{DQ} = 250 mA, P _{IN} = 21 dBm, Freq = 5.2 GHz
Power Added Efficiency	PAE ₂	_	54	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, Freq = 5.55 \text{ GHz}$
Power Added Efficiency	PAE ₃	-	53	-	%	V _{DD} = 28 V, I _{DQ} = 250 mA, P _{IN} = 21 dBm, Freq = 5.9 GHz
Power Gain	G _{P1}	_	25.2	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, Freq = 5.2 \text{ GHz}$
Power Gain	G _{P2}	-	25.0	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{IN} = 21 \text{ dBm}, Freq = 5.55 \text{ GHz}$
Power Gain	G _{P3}	_	25.0	-	dB	V _{DD} = 28 V, I _{DQ} = 250 mA, P _{IN} = 21 dBm, Freq = 5.9 GHz
Input Return Loss	S11	_	-16	-	dB	P _{IN} = -20 dBm, 5.2 - 5.9 GHz
Output Return Loss	S22	_	-10	-	dB	P _{IN} = -20 dBm, 5.2 - 5.9 GHz
Output Mismatch Stress	VSWR	-	-	3:1	Ψ	No Damage at All Phase Angles

Notes:

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	T_{J}	225	°C	
Thermal Resistance, Junction to Case (Packaged) ¹	$R_{\theta JC}$	2.47	°C/W	Pulse Width = 150 μs, Duty Cycle =20%

Note:

¹ Scaled from PCM data.

² Measured in CMPA5259025S high volume test fixture at 5.2, 5.55, and 5.9 GHz and may not show the full capability of the device due to source inductance and thermal performance.

 $^{^3}$ Unless otherwise noted: Pulse width = 150 μ s, duty cycle = 20%.

 $^{^{1}}$ For the CMPA5259025S at P_{piss} = 26 W.

MACOM

Typical Performance of the CMPA5259025S

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$, pulse width = 150 μ s, duty cycle = 20%, $P_{IN} = 21 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

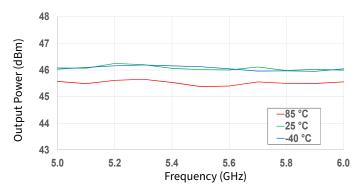


Figure 1. Output Power vs Frequency as a Function of Temperature

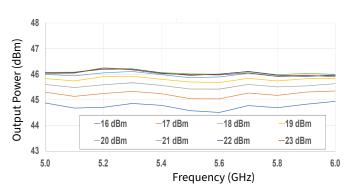


Figure 2. Output Power vs Frequency as a Function of Input Power

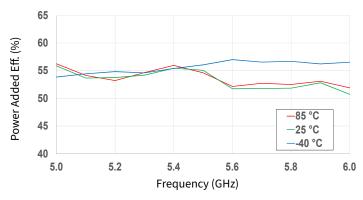


Figure 3. Power Added Eff. vs Frequency as a **Function of Temperature**

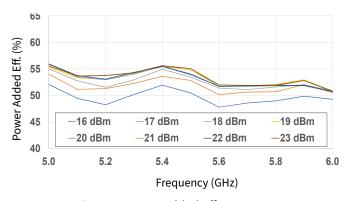


Figure 4. Power Added Eff. vs Frequency as a **Function of Input Power**

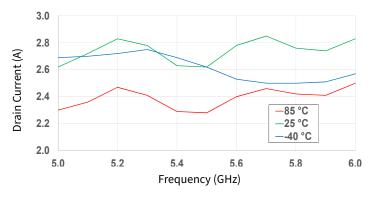


Figure 5. Drain Current vs Frequency as a Function of Temperature

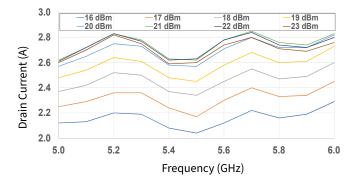


Figure 6. Drain Current vs Frequency as a Function of Input Power

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$, pulse width = 150 μ s, duty cycle = 20%, $P_{IN} = 21 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

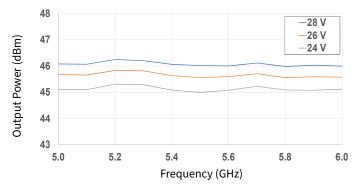


Figure 7. Output Power vs Frequency as a Function of V_D

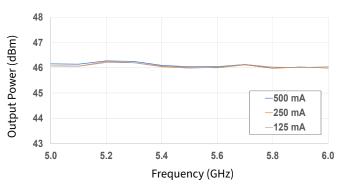


Figure 8. Output Power vs Frequency as a Function of I_{DO}

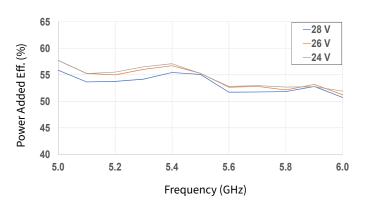


Figure 9. Power Added Eff. vs Frequency as a Function of V_D

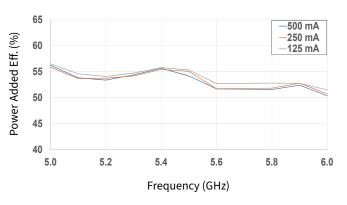


Figure 10. Power Added Eff. vs Frequency as a Function of I_{po}

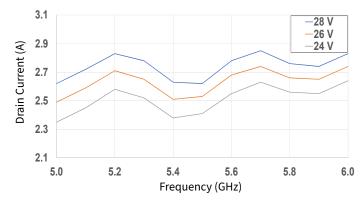


Figure 11. Drain Current vs Frequency as a Function of $V_{\scriptscriptstyle D}$

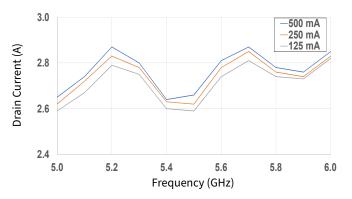
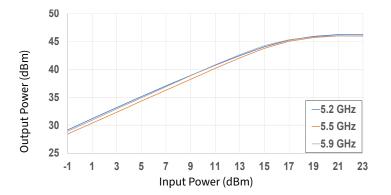



Figure 12. Drain Current vs Frequency as a Function of I_{po}

4

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$, pulse width = 150 μ s, duty cycle = 20%, $P_{IN} = 21 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

60 50 Power Added Eff. (%) 40 30 20 5.2 GHz 10 5.5 GHz -5.9 GHz 0 21 Input Power (dBm)

Figure 13. Output Power vs Input Power as a **Function of Frequency**

Figure 14. Power Added Eff. vs Input Power as a **Function of Frequency**

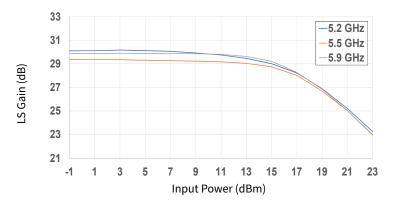
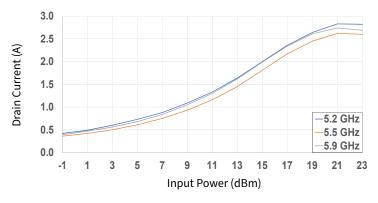



Figure 15. Large Signal Gain vs Input Power as a **Function of Frequency**

10 Gate Current (mA) 5 0 -5.2 GHz -5 -5.5 GHz -5.9 GHz 11 19 21 Input Power (dBm)

Figure 16. Drain Current vs Input Power as a **Function of Frequency**

Figure 17. Gate Current vs Input Power as a **Function of Frequency**

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$, pulse width = 150 μs , duty cycle = 20%, $P_{IN} = 21 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

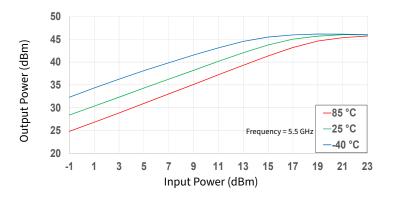


Figure 18. Output Power vs Input Power as a Function of Temperature

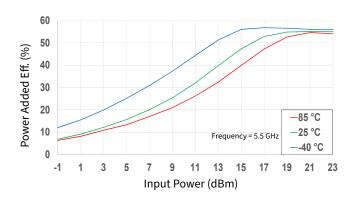


Figure 19. Power Added Eff. vs Input Power as a Function of Temperature

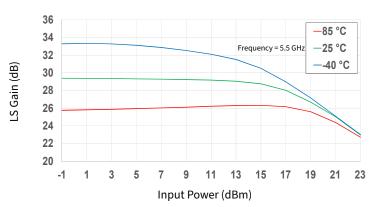


Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

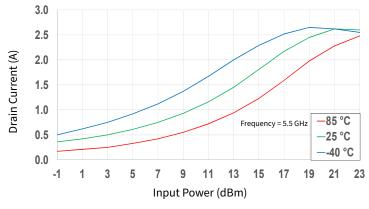


Figure 21. Drain Current vs Input Power as a Function of Temperature

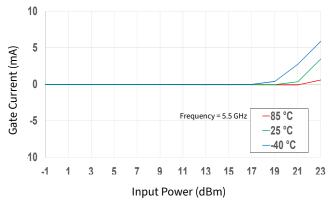


Figure 22. Gate Current vs Input Power as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$, pulse width = 150 μs , duty cycle = 20%, $P_{IN} = 21 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

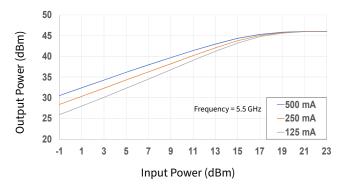


Figure 23. Output Power vs Input Power as a Function of I_{DO}

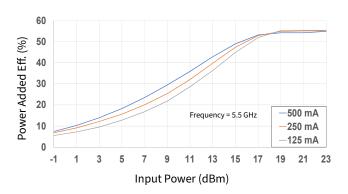


Figure 24. Power Added Eff. vs Input Power as a Function of I_{DO}

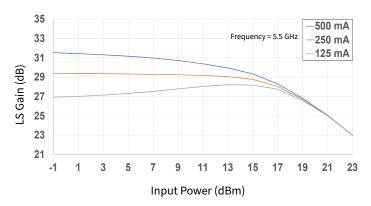


Figure 25. Large Signal Gain vs Input Power as a Function of $\rm I_{DO}$

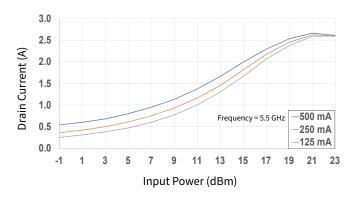


Figure 26. Drain Current vs Input Power as a Function of I_{DO}

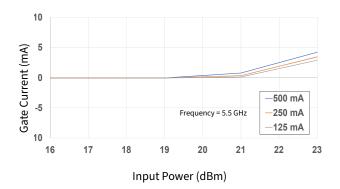


Figure 27. Gate Current vs Input Power as a Function of I_{DO}

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$, pulse width = 150 μ s, duty cycle = 20%, $P_{IN} = 21 \text{ dBm}$, $T_{BASE} = +25 \,^{\circ}\text{C}$

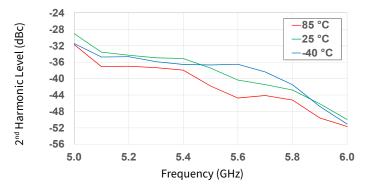


Figure 28. 2nd Harmonic vs Frequency as a Function of Temperature

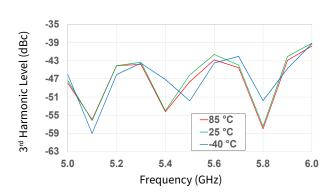


Figure 29. 3rd Harmonic vs Frequency as a Function of Temperature

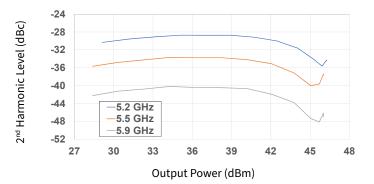


Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

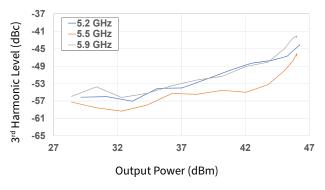


Figure 31. 3rd Harmonic vs Output Power as a Function of Frequency

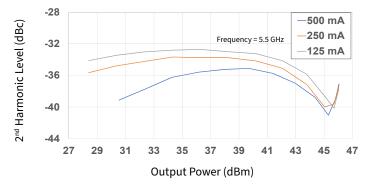


Figure 32. 2^{nd} Harmonic vs Output Power as a Function of I_{DQ}

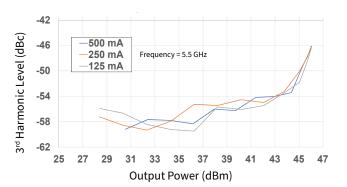


Figure 33. 3^{rd} Harmonic vs Output Power as a Function of I_{no}

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{RASF} = +25 ^{\circ}\text{C}$

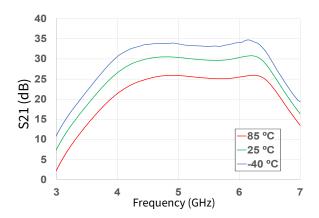


Figure 34. Gain vs Frequency as a Function of Temperature

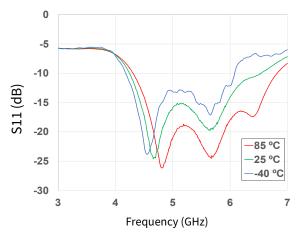


Figure 36. Input RL vs Frequency as a **Function of Temperature**

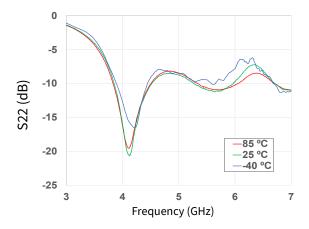


Figure 38. Output RL vs Frequency as a **Function of Temperature**

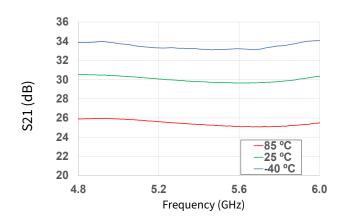


Figure 35. Gain vs Frequency as a Function of Temperature

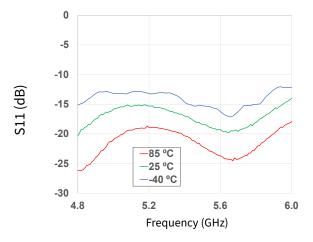


Figure 37. Input RL vs Frequency as a **Function of Temperature**

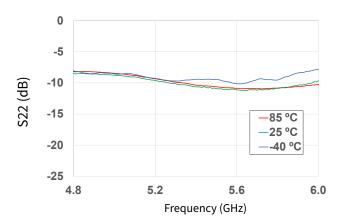


Figure 39. Output RL vs Frequency as a

Function of Temperature

Test conditions unless otherwise noted: $V_D = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$, $P_{IN} = -20 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

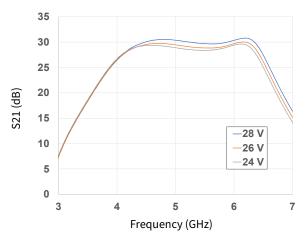


Figure 40. Gain vs Frequency as a Function of Voltage

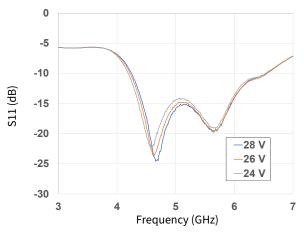


Figure 42. Input RL vs Frequency as a Function Voltage

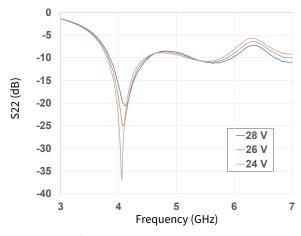


Figure 44. Output RL vs Frequency as a Function of Voltage

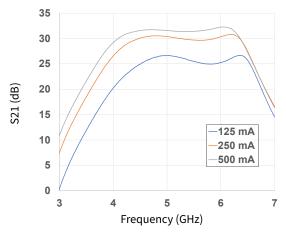


Figure 41. Gain vs Frequency as a Function of I_{DO}

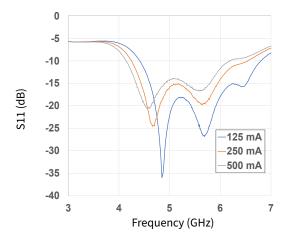
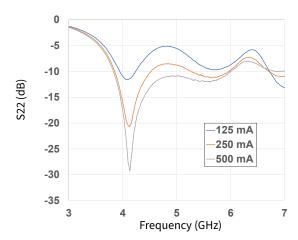
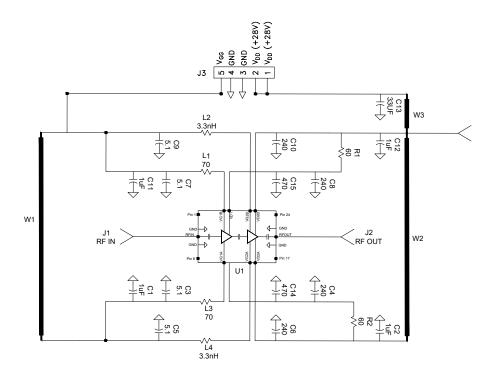
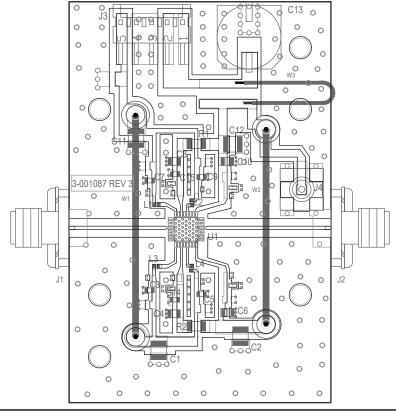


Figure 43. Input RL vs Frequency as a Function of I_{DO}


Figure 45. Output RL vs Frequency as a Function of I

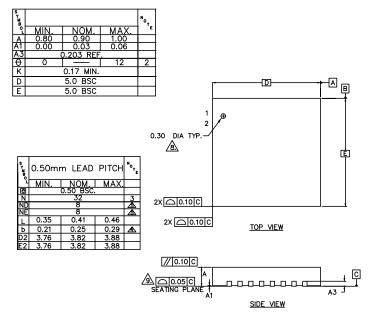
CMPA5259025S-AMP1 Demonstration Amplifier Schematic

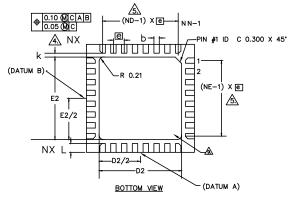
CMPA5259025S-AMP1 Demonstration Amplifier Circuit Outline

CMPA5259025S-AMP1 Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
C13	CAP, 33 UF, 20%, G CASE	1
C1, C2, C11, C12	CAP, 1.0 UF, 100 V, 10%, X7R, 1210	4
C3, C5, C7, C9	CAP, 5.1 pF, +/-0.05 pF, 0603, ATC, 600 S	4
C4, C6, C8, C10	CAP, 240 pF +/-5%, 0805, ATC, 600 F	4
C14, C15	470 pF, NPO/COG 0603, Murata	2
L2, L4	INDUCTOR, SMT, 0402, 3.3 nH, 5%, Coilcraft	2
L1, L3	Ferrite bead, 70 ohm, 780 mA, 0402, Murata	2
R1, R2	Ferrite bead, 60 ohm, 3.7 A, 18806, Murata	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20 MIL	2
J3	HEADER RT>PLZ .1CEN LK 5POS	1
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
W1	WIRE, BLACK, 20 AWG ~ 1.5"	1
W2	WIRE, BLACK, 20 AWG ~ 1.3"	3
W3	WIRE, BLACK, 20 AWG ~ 1.5"	3
	PCB, TEST FIXTURE, RF35, 0.010", 5X5 2-STAGE, QFN	1
	HEATSINK, 6X6 QFN, 3-STAGE 2.600 X 1.700 X 0.250	1
	2-56 SOC HD SCREW 3/16 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	CMPA5259050S	1

Electrostatic Discharge (ESD) Classifications


Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1B (≥ 500 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (≥ 200 V)	JEDEC JESD22 C101-C


Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Product Dimensions CMPA5259025S (Package 5 x 5 QFN)

NOTES:

- TICS : 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M. 1994.
 2. ALL DIMENSIONS ARE IN MILLIMETERS, & IS IN DEGREES.
 3. N IS THE TOTAL NUMBER OF TERMINALS.

- 3. N IS THE TOTAL NUMBER OF TERMINALS.

 DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.

 5. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.
- 6. MAX. PACKAGE WARPAGE IS 0.05 mm.
 7. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.
- A PIN #1 ID ON TOP WILL BE LASER MARKED.
- 9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE
- TERMINALS.

 10. THIS DRAWING CONFORMS TO JEDEC REGISTERED OUTLINE MO-220

 11. ALL PLATED SURFACES ARE 100% TIN MATTE 0.010 mm +/- 0.005 mm.

	28 29 30 32 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7
1 [0	24
2		23
з 🗌		22
4	E0E000E0	21
5	5259025S	20
6 🗆	PWO#	19
7		18
8 🗆		17
_	° 5 L 5 L 4 5 5	_

Pin	Desc.	Pin	Desc.	Pin	Desc.
1	NC	15	NC	29	NC
2	NC	16	VD2A	30	VD1
3	RFGND	17	NC	31	NC
4	RFIN	18	NC	32	VG1B
5	RFGND	19	NC		
6	NC	20	RFGND		
7	NC	21	RFOUT		
8	NC	22	RFGND		
9	VG1A	23	NC		
10	NC	24	NC		
11	NC	25	VD2B		
12	NC	26	NC		
13	VG2A	27	NC		
14	NC	28	VG2B		

Part Number System

CMPA5259025S

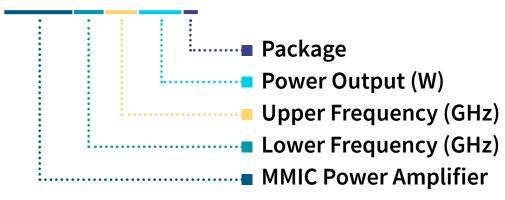


Table 1.

Parameter	Value	Units
Lower Frequency	5.2	GHz
Upper Frequency	5.9	GHz
Power Output	25	W
Package	Surface Mount	-

Note:

Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
А	0
В	1
С	2
D	3
Е	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA5259025S	GaN HEMT	Each	REAL PROPERTY OF THE PARTY OF T
CMPA5259025S-AMP1	Test Board with GaN MMIC Installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.