

CMPA3135060S

3.1 - 3.5 GHz, 60 W, Packaged GaN MMIC Power Amplifier

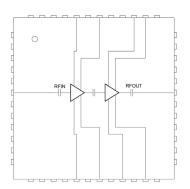
Description

The CMPA3135060S is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. This MMIC power amplifier contains a two-stage reactively matched amplifier design approach, enabling high power and power added efficiency to be achieved in a 7mm x 7mm, surface mount (QFN package). The MMIC is designed for S-Band radar power amplifier applications.

Package Type: 7x7 QFN PN: CMPA3135060S

Typical Performance Over 3.1 - 3.5 GHz ($T_c = 25^{\circ}$ C)

Parameter	3.1 GHz	3.3 GHz	3.5 GHz	Units
Small Signal Gain ^{1,2}	37	37	36	dB
Output Power ^{1, 3}	72	83	87	W
Power Gain ^{1,3}	29	29	29	dB
Power Added Efficiency ^{1,3}	55	55	57	%


Notes:

Features

- 3.1 3.5 GHz Operation
- 75 W Typical Output Power
- 29 dB Power Gain
- 50-ohm Matched for Ease of Use
- Plastic Surface-Mount Package, 7x7 mm QFN

Applications

- Air Traffic Control Radar
- Defense Surveillance Radar
- Fire Control Radar
- Military Air, Land and Sea Radar
- Weather Radar

Features are typical performance across frequency under 25°C operation. Please reference performance charts for additional details.

 $^{^{1}}$ V_{DD} = 50 V, I_{DQ} = 260 mA

² Measured at P_{IN} = -20 dBm

 $^{^3}$ Measured at P_{IN} = 20 dBm and 300 μ s; Duty Cycle = 20%

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	$V_{ extsf{DSS}}$	150	V	ar°c
Gate-source Voltage	V_{GS}	-10, +2	V_{DC}	25°C
Storage Temperature	T _{STG}	55, +150	°C	
Maximum Forward Gate Current	I _G	15.2	mA	25°C
Maximum Drain Current	I _{GMAX}	14.2	Α	
Soldering Temperature	Ts	260	°C	

Electrical Characteristics (Frequency = 3.1 GHz to 3.5 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_{D} = 15.2 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	V _{DD} = 50 V, I _{DQ} = 260 mA
Saturated Drain Current ¹	I _{DS}	9.9	14.1	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	100	_	_	V	$V_{GS} = -8 \text{ V}, I_D = 15.2 \text{ mA}$
RF Characteristics ^{2,3}						
Small Signal Gain at 3.1 - 3.5 GHz	S21 ₁	_	36	_	dB	P _{IN} = -20 dBm
Output Power at 3.1 GHz	P _{OUT1}	_	72	_		
Output Power at 3.3 GHz	P _{OUT2}	_	83	_	w	
Output Power at 3.5 GHz	P _{OUT3}	_	87	_		
Power Added Efficiency at 3.1 GHz	PAE ₁	_		_		
Power Added Efficiency at 3.3 GHz	PAE ₂	_	55	_	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 260 \text{ mA}, P_{IN} = 20 \text{ dBm}$
Power Added Efficiency at 3.5 GHz	PAE ₃	_	57	_		
Power Gain at 3.1 GHz	G _{P1}	_		_		
Power Gain at 3.3 GHz	G _{P2}	_	29	_		
Power Gain at 3.5 GHz	G _{P3}	_		_	dB	
Input Return Loss at 3.1 - 3.3 GHz	S11	_	-12	_		D = 20 dB:
Output Return Loss at 3.1 - 3.5 GHz	S12	_	-7	_		$P_{IN} = -20 \text{ dBm}$
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles

Notes:

Thermal Characteristics

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	TJ	225	°C	
Thermal Resistance, Junction to Case (packaged) ¹	$R_{\theta JC}$	TBD	°C/W	Pulse Width = 300μs, Duty Cycle =20%

Notes:

¹Scaled from PCM data

² Measured in CMPA3135060S high volume test fixture at 3.1, 3.3 and 3.5 GHz and may not show the full capability of the device due to source inductance and thermal performance.

 $^{^{\}text{3}}$ Unless otherwise noted: Pulse Width = 25 μs , Duty Cycle = 1%

 $^{^{\}rm 1}\,\text{Measured}$ for the CMPA3135060S at P_{DISS} = TBD W

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DO} = 260 \text{ mA}$, Pulse Width = 300 μ s, Duty Cycle = 20%, $P_{IN} = 20 \text{ dBm}$, $T_{BASE} = +25^{\circ}\text{C}$

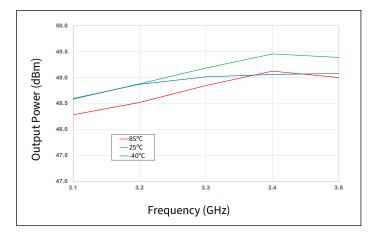


Figure 1. Output Power vs Frequency as a Function of Temperature

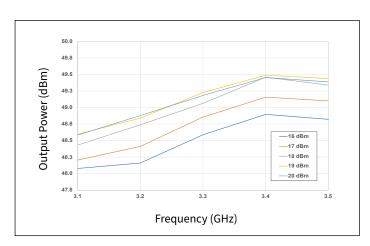


Figure 2. Output Power vs Frequency as a Function of Input Power

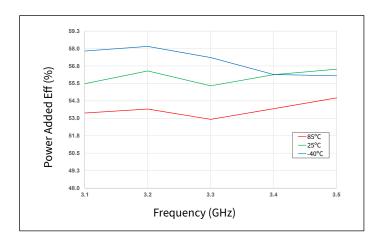


Figure 3. Power Added Eff. vs Frequency as a Function of Temperature

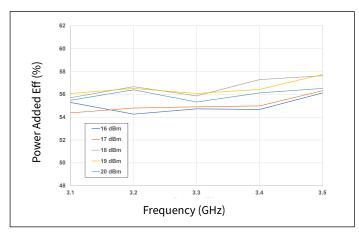


Figure 4. Power Added Eff. vs Frequency as a Function of Input Power

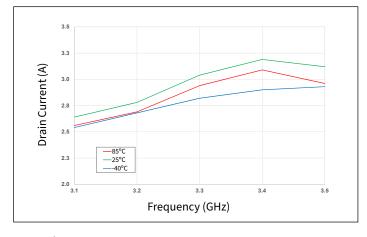


Figure 5. Drain Current vs Frequency as a Function of Temperature

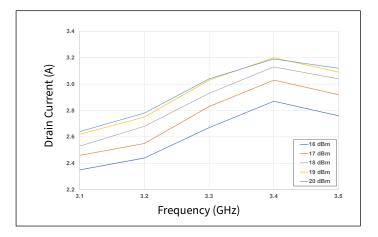


Figure 6. Drain Current vs Frequency as a Function of Input Power

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DQ} = 260 \text{ mA}$, Pulse Width = $300 \mu s$, Duty Cycle = 20 %, $P_{IN} = 20 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$

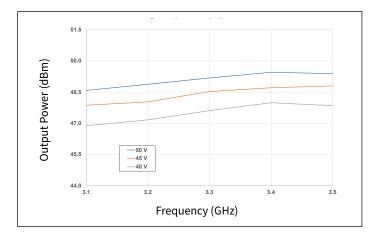


Figure 7. Output Power vs Frequency as a Function of V_D

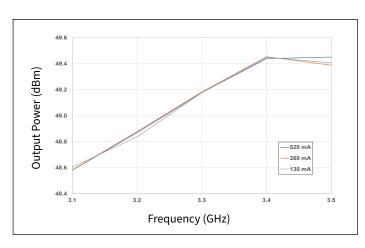


Figure 8. Output Power vs Frequency as a Function of IDQ

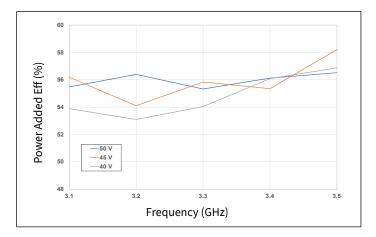


Figure 9. Power Added Eff. vs Frequency as a Function of V_D

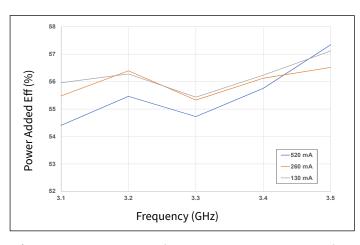


Figure 10. Power Added Eff. vs Frequency as a Function of I_{DO}

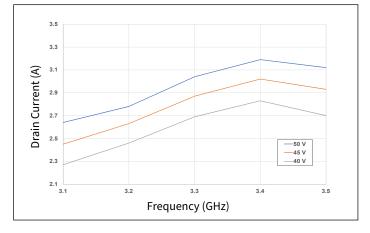


Figure 11. Drain Current vs Frequency as a Function of V_D

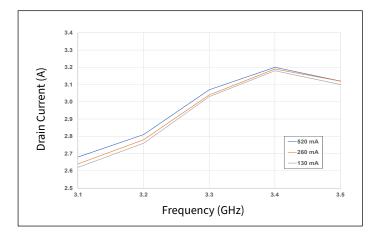
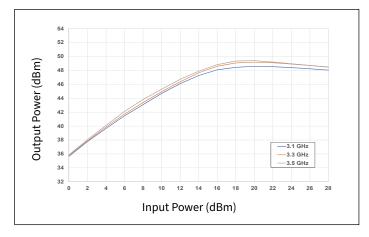
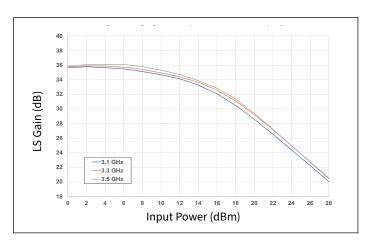


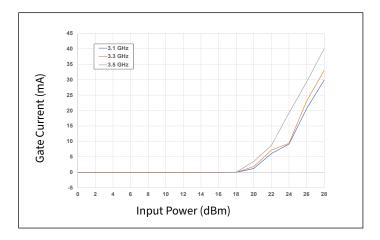
Figure 12. Drain Current vs Frequency as a Function of I_{DO}

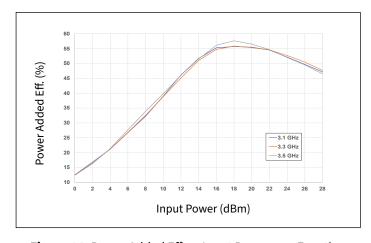
4 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:


Rev. 1.0, 2022-8-25


Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DQ} = 260 \text{ mA}$, Pulse Width = $300 \mu s$, Duty Cycle = 20 %, $P_{IN} = 20 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$


Figure 13. Output Power vs Input Power as a Function of Frequency

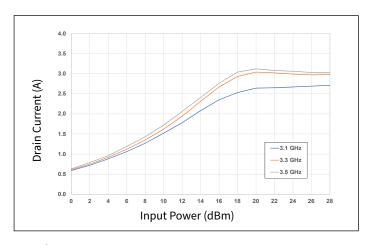
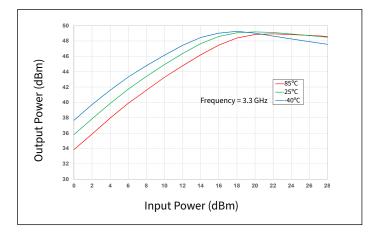
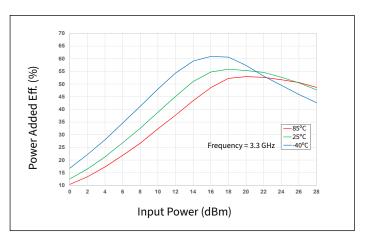
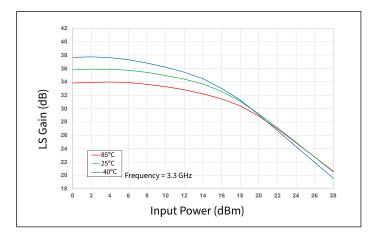
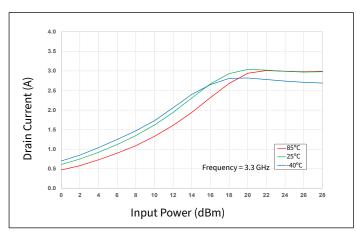

Figure 15. Large Signal Gain vs Input Power as a Function of Frequency

Figure 17. Gate Current vs Input Power as a Function of Frequency


Figure 14. Power Added Eff. vs Input Power as a Function of Frequency


Figure 16. Drain Current vs Input Power as a Function of Frequency


Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DO} = 260 \text{ mA}$, Pulse Width = 300 μ s, Duty Cycle = 20%, $P_{IN} = 20 \text{ dBm}$, $T_{BASE} = +25^{\circ}\text{C}$


Figure 18. Output Power vs Input Power as a Function of Temperature

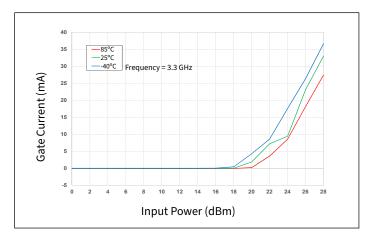

Figure 19. Power Added Eff. vs Input Power as a Function of Temperature

Figure 20. Large Signal Gain vs Input Power as a Function of Temperature

Figure 21. Drain Current vs Input Power as a Function of Temperature

Figure 22. Gate Current vs Input Power as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DQ} = 260 \text{ mA}$, Pulse Width = $300 \mu s$, Duty Cycle = 20%, $P_{IN} = 20 \text{ dBm}$, $T_{BASE} = +25^{\circ}\text{C}$

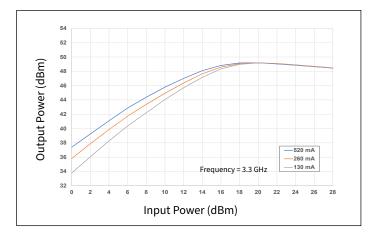
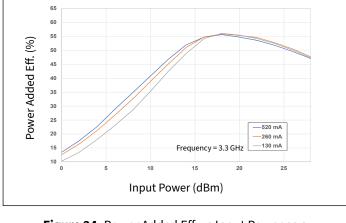
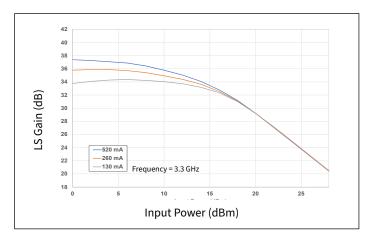




Figure 23. Output Power vs Input Power as a Function of I_{DQ}

Figure 24. Power Added Eff. vs Input Power as a Function of I_{DO}

Figure 25. Large Signal Gain vs Input Power as a Function of I_{DO}

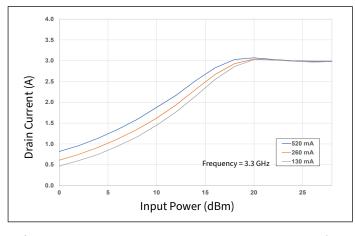


Figure 26. Drain Current vs Input Power as a Function of IDO

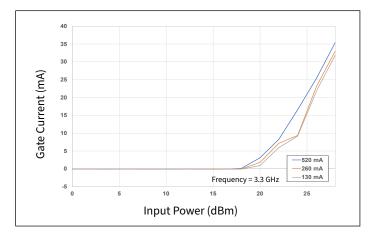


Figure 27. Gate Current vs Input Power as a Function of Ipo

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DO} = 260 \text{ mA}$, Pulse Width = 300 μ s, Duty Cycle = 20%, $P_{IN} = 20 \text{ dBm}$, $T_{BASE} = +25^{\circ}\text{C}$

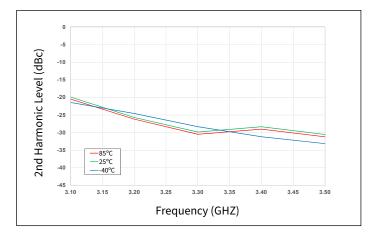


Figure 28. 2nd Harmonic vs Frequency as a Function of Temperature

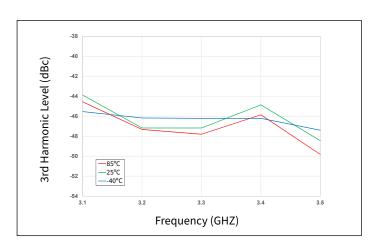


Figure 29. 3rd Harmonic vs Frequency as a Function of Temperature

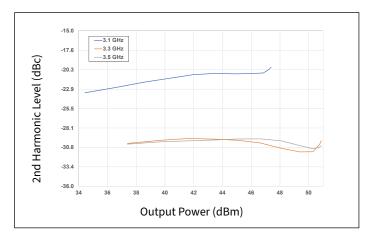


Figure 30. 2nd Harmonic vs Output Power as a Function of Frequency

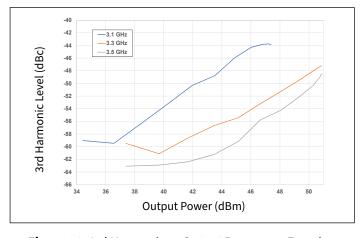


Figure 31. 3rd Harmonic vs Output Power as a Function of Frequency

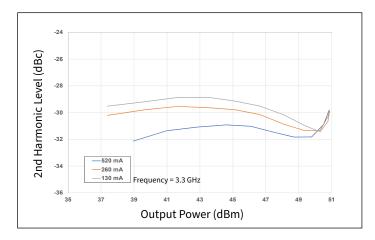


Figure 32. 2nd Harmonic vs Output Power as a Function of IDO

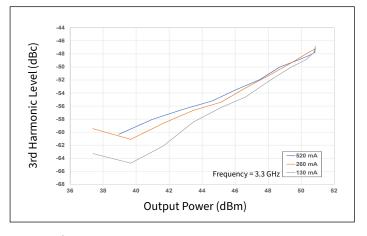


Figure 33. 3rd Harmonic vs Output Power as a Function of IDO

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DO} = 260 \text{ mA}$, $P_{IN} = -30 \text{ dBm}$, $T_{BASE} = +25 ^{\circ}\text{C}$



Figure 34. Gain vs Frequency as a Function of Temperature

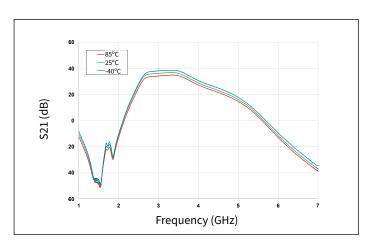


Figure 35. Gain vs Frequency as a Function of Temperature

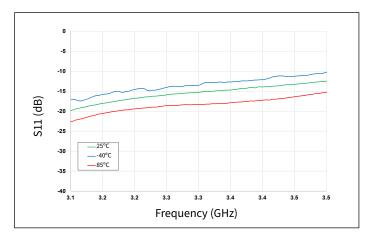


Figure 36. Input RL vs Frequency as a Function of Temperature

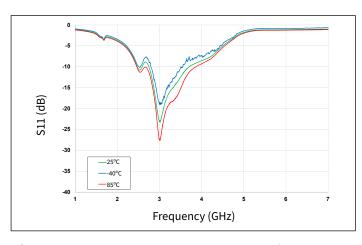


Figure 37. Input RL vs Frequency as a Function of Temperature

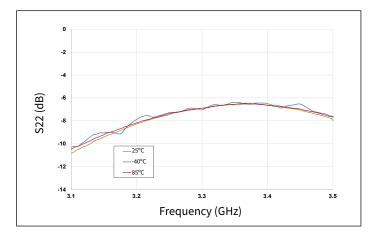


Figure 38. Output RL vs Frequency as a Function of Temperature

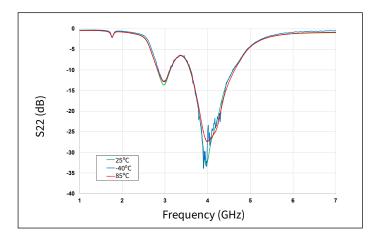


Figure 39. Output RL vs Frequency as a Function of Temperature

Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DQ} = 260 \text{ mA}$, $P_{IN} = -30 \text{ dBm}$, $T_{BASE} = +25^{\circ}\text{C}$

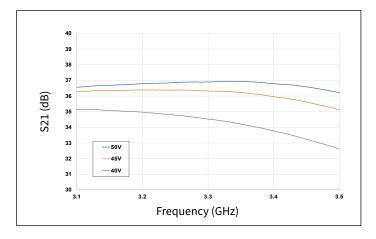


Figure 40. Gain vs Frequency as a Function of Voltage

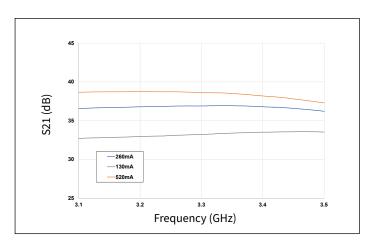


Figure 41. Gain vs Frequency as a Function of IDQ

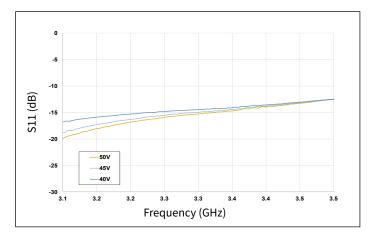


Figure 42. Input RL vs Frequency as a Function Voltage

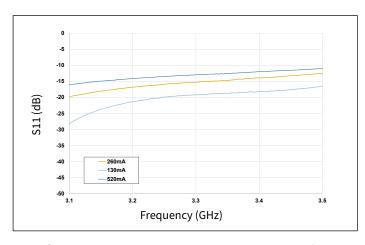


Figure 43. Input RL vs Frequency as a Function of IDO

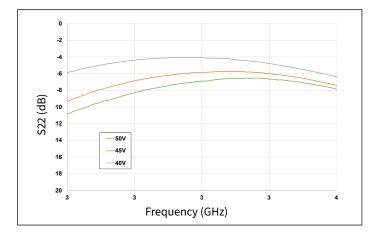
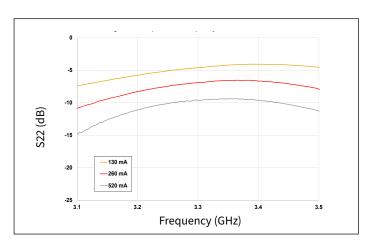
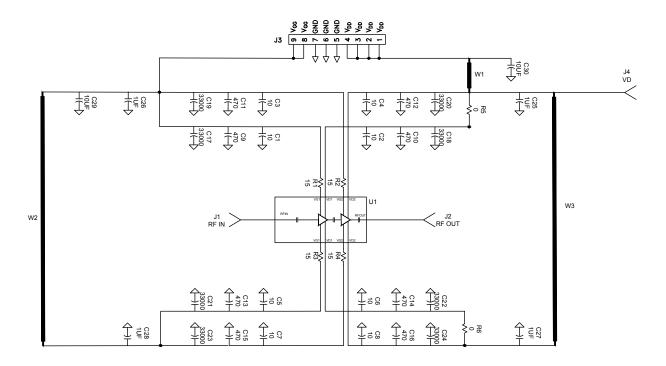
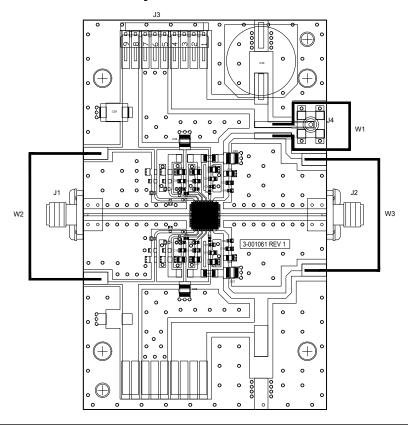


Figure 44. Output RL vs Frequency as a Function of Voltage


Figure 45. Output RL vs Frequency as a Function of IDO

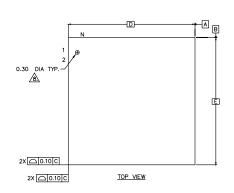
CMPA3135060S-AMP1 Application Circuit

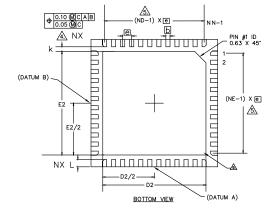
CMPA3135060S-AMP1 Evaluation Board Layout

CMPA3135060S-AMP1 Evaluation Board Bill of Materials

Designator	Description	Qty
C1, C2, C3, C4, C5, C6, C7, C8	CAP, 10pF, +/-5%, pF, 200V, 0402	8
C9, C10, C11, C12, C13, C14, C15, C16	AP, 470pF, 5%, 100V, 0603	8
C17, C18, C19, C20, C21, C22, C23, C24	CA, 330000pF, 0805,100V, X7R	8
C25, C26, C27, C28	CAP, 1.0μF, 100V, 10%, X7R, 1210	4
C29	CAP 10μF 16V TANTALUM, 2312	1
C30	CAP, 330μF, +/-20%, 100V, ELECTROLYTIC, CASE SIZE K16	1
R1, R2, R3, R4	RES 15 OHM, +/-1%, 1/16W, 0402	4
R5, R6	RES 0.0 OHM 1/16W 1206 SMD	2
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	4
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
J3	HEADER RT>PLZ .1CEN LK 9POS	1
W2, W3	WIRE, BLACK, 20 AWG ~ 2.5"	2
W1	WIRE, BLACK, 20 AWG ~ 3.0"	1
	PCB, TEST FIXTURE, RF-35TC, 0.010 THK, 7X7 Overmold QFN SOCKET BOARD	1
	2-56 SOC HD SCREW 3/16 SS	4
	#2 SPLIT LOCKWASHER SS	4
Q1	CMPA3135060S	1

Electrostatic Discharge (ESD) Classifications


Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1A	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	C1	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C


Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

Product Dimensions CMPA3135060S (Package 7 x 7 QFN)

- NOTES:

 1. DIMENSIONING AND TOLERANCING CORPORM TO ASME Y14.5M. 1994.

 2. ALL DIMENSIONS ARE IN MILLIMETERS, 0 IS IN DEGREES.

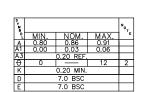
 3. IN IS THE TOTAL NUMBER OF TERMINALS.

 \$\frac{1}{2}\text{DIMENSIONS APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.

 0.30mm FROM TERMINAL TIP.

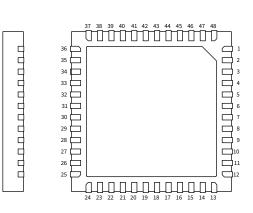
 5. IN AND IN REPETER 10 THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY.

 6. MAX. PACKAGE WARPAGE IS 0.05 mm.


 7. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.

 \$\frac{1}{2}\text{PIN \$\psi\$ ID ON TOP WILL BE LASER MARKED.}

 - BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.


 10. THIS DRAWNO CONFORMS TO JEDEC REGISTERED OUTLINE MO-220

 11. ALL PLATED SURFACES ARE TIN 0.010 mm +/- 0.005mm.

8 × 3 B O	0.50mr	m LEAD	PITCH	No _{TE}
14	MIN.	NOM.	MAX.	
e		0.50 BSC		
Z		3		
ND		12		Δ
NE		12		<u>A</u>
L	0.35	0.41	0.46	
ь	0.19	0.25	0.33	A
D2	5.61	5.72	5.83	
E2	5.61	5.72	5.83	

PIN	DESC.	PIN	DESC.	PIN	DESC.	PIN	DESC.
1	NC	15	NC	29	NC	43	NC
2	NC	16	NC	30	RFGND	44	VG1A
3	NC	17	VG1B	31	RFOUT	45	NC
4	NC	18	NC	32	RFGND	46	NC
5	RFGND	19	VD1B	33	NC	47	NC
6	RFIN	20	NC	34	NC	48	NC
7	RFGND	21	VG2B	35	NC		
8	NC	22	NC	36	NC		
9	NC	23	VD2B	37	NC		
10	NC	24	NC	38	VD2A		
11	NC	25	NC	39	NC		
12	NC	26	NC	40	VG2A		
13	NC	27	NC	41	NC		
14	NC	28	NC	42	VD1A		

Part Number System

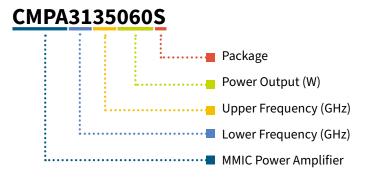


Table 1.

Parameter	Value	Units
Lower Frequency	3.1	GHz
Upper Frequency	3.5	GHZ
Power Output	60	W
Package	Surface Mount	-

Note:

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA3135060S	Packaged GaN MMIC PA	Each	
CMPA3135060S-AMP1	Evaluation Board with GaN MMIC Installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.