

CMPA2735075F1

75 W, 2.7 - 3.5 GHz, GaN MMIC, Power Amplifier

Description

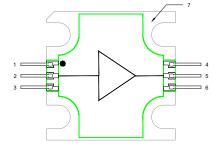
The CMPA2735075F1 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier design approach enabling very wide bandwidths to be achieved.

Package Type: 440219 PN: CMPA2735075F1

Typical Performance Over 2.7 - 3.5 GHz ($T_c = 25^{\circ}C$)

Parameter	2.7 GHz	2.9 GHz	3.1 GHz	3.3 GHz	3.5 GHz	Units
Small Signal Gain	29	29	30	29	29	dB
Saturated Output Power	63	74	86	80	79	W
PAE @ P _{SAT}	45	54	57	57	57	%

Notes $P_{IN} = 28 \text{ dBm}$


1

Features

- 29 dB Small Signal Gain
- 76 W Typical P_{SAT}
- 28 V Operation
- High Breakdown Voltage
- **High Temperature Operation**
- 0.5" x 0.5" Total Product Size

Applications

Civil and Military Pulsed Radar Amplifiers

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. Rev. 1.0, 2022-9-20 For further information and support please visit.

https://www.macom.com/support

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	84	N	ar°c
Gate-source Voltage	V _{GS}	-10, +2	V _{DC}	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	l _G	28	mA	25°C
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case (packaged) ¹	D	0.77	9C /W	300μsec, 20%, 85°C
Thermal Resistance, Junction to Case (packaged) ²	- R _{θJC}	2.0	°C/W	CW, 85°C

Notes:

¹ Measured for the CMPA2735075F1 at P_{DISS} = 64 W (pulsed)

 2 Measured for the CMPA2735075F1 at P_{DISS} = 56 W (CW)

Electrical Characteristics (Frequency = 2.7 GHz to 3.5 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_{D} = 28 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	—	-2.7	—	V _{DC}	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	19.6	27.4	—	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{bd}	84	-	—	V	$V_{GS} = -8 V, I_{D} = 28 mA$
RF Characteristics ^{2,3}						
Small Signal Gain	S21	26.5	28.6	_		
Input Return Loss	S11	_	-14.4	-10	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}$
Output Return Loss	S22	_	-10.3	-7		
Output Power at 2.7 GHz	Pouti	45.7	63	_	W	
Output Power at 2.9 GHz	P _{OUT2}	60.2	74	—		
Output Power at 3.1 GHz	P _{OUT3}		86	—		
Output Power at 3.3 GHz	P _{OUT4}	66.1	80	—		
Output Power at 3.5 GHz	P _{out5}		79	_		
Power Added Efficiency at 2.7 GHz	PAE ₁	—	45	—		$V_{DD} = 28 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 28 \text{ dBm},$
Power Added Efficiency at 2.9 GHz	PAE ₂	45	54	_		
Power Added Efficiency at 3.1 GHz	PAE ₃	49		_	%	
Power Added Efficiency at 3.3 GHz	PAE ₄	40	57	_		
Power Added Efficiency at 3.5 GHz	PAE₅	48		_		
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, V_{DD} = 28 V, I_{DQ} = 800 mA, P_{OUT} = 75 W

Notes:

¹Scaled from PCM data

²All data pulse tested in CMPA2735075F1-AMP

³Pulse Width = 300µs, Duty Cycle = 20%

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 1.0, 2022-9-20 For further information and support please visit:

²

Typical Performance of the CMPA2735075F1

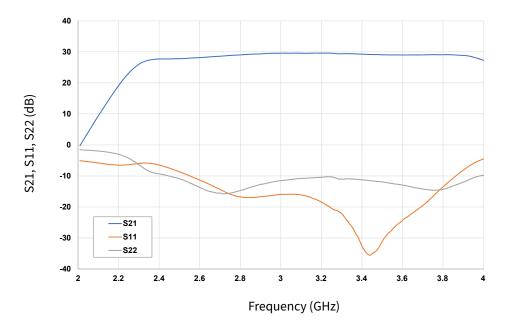
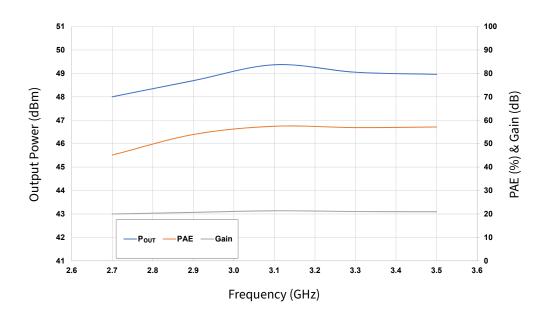
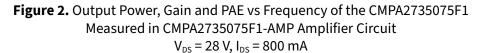
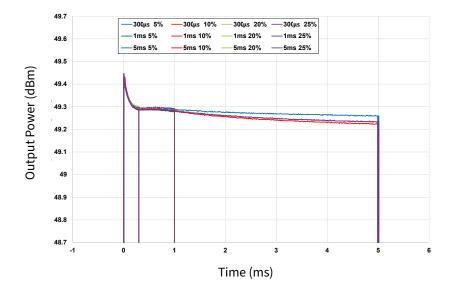




Figure 1. Gain and Return Losses vs Frequency of the CMPA2735075F1 Measured in CMPA2735075F1-AMP Amplifier Circuit $V_{DS} = 28 V$, $I_{DS} = 800 mA$



³ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 1.0, 2022-9-20 For further information and support please visit:

Typical Pulse Droop Performance

Pulse Width	Duty Cycle (%)	Droop (dB)
10µs	5-25	0.10
50µs	5-25	0.10
100µs	5-25	0.10
300µs	5-25	0.20
1 ms	5-25	0.20
5 ms	5-25	0.20

Electrostatic Discharge (ESD) Classifications

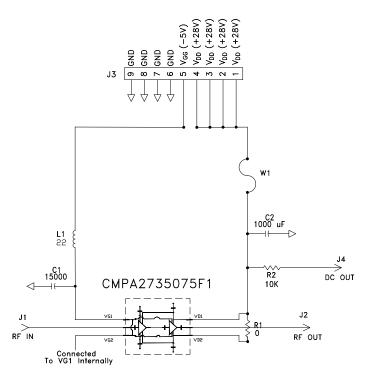
4

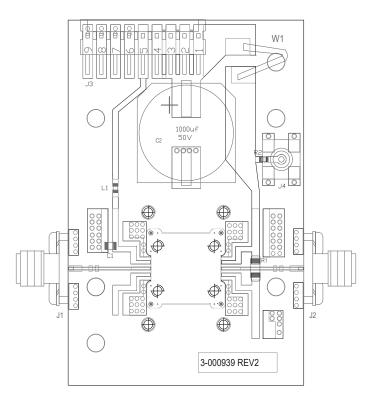
Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	3A	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 1.0, 2022-9-20

CGHV37400F-AMP Application Circuit Bill of Materials

Designator	Description	Qty
L1	FERRITE, 22 OHM, 0805	1
R1	RES, 1/8W, 1206, 5%, 0 OHM	1
R2	RES, 1/16W, 0603, 5%, 10K	1
C1	CAP, 15000pF, 100V, 0805, X7R	1
C2	CAP, 1000μF, 20%, 50V, ELECT, MVY, SMD	1
W1	CABLE, 18 AWG, 4.2	1
J4	CONNECTOR; SMB, Straight JACK, SMD	1
J1,J2	CONN, N, FEM, W/.500 SMA FLNG	2
J3	DC CONN, HEADER RT>PLZ .1CEN LK 9POS	1
Q1	CMPA2735075F1	1
	2-56 SOC HD SCREW 1/4 SS (For Device)	4
	WIRE ASSEMBLY, 9-PIN, TEST FIXTURE	1
	LEAD CLAMP, DELRIN	2
	2-56 SOC HD SCREW 1/2 SS (For Clamps)	4
	INDIUM TIM, AL CLAD, .47"x .30" x .003"	1
	TEST FIXTURE INSTRUCTIONS	1


CMPA2735075F1-AMP Demonstration Amplifier Circuit Bill of Materials


5 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 1.0, 2022-9-20

CMPA2735075F1-AMP Demonstration Amplifier Circuit Schematic

CMPA2735075F1-AMP Demonstration Amplifier Circuit Outline

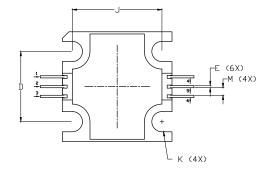
6 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

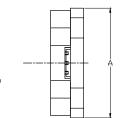
1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

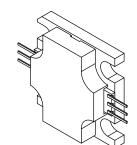
4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

2. CONTROLLING DIMENSION: INCH.

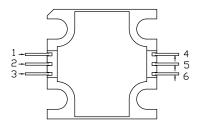

5. ALL PLATED SURFACES ARE NI/AU


NOTES


Product Dimensions CMPA2735075F1 (Package Type – 440219)

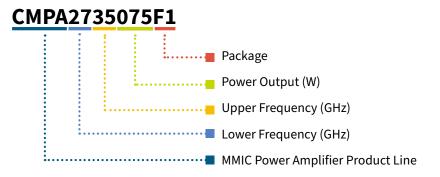
B (6X)

1.



<u>NOT TO SCALE</u>

INCHES MILLIMETERS MIN MIN MAX DIM MAX А 0.495 0.505 12.57 12.82 В 0.003 0.005 0.076 0.127 0.140 С 0.160 3.56 4.06 D 0.315 0.325 8.00 8.25 Е 0.008 0.012 0.204 0.304 F 0.055 0.065 1.40 1.65 0.495 G 0.505 12.57 12.82 Н 0.695 0.705 17.65 17.91 0.403 J 0.413 10.24 10.49 2.34 κ ø .092 0.075 L 0.085 1.905 2.159 М 0.032 0.040 1.02 0.82


7

Function		
Gate		
RF In		
Gate		
Drain		
RF Out		
Drain		
Source		

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 1.0, 2022-9-20

Part Number System

Table 1.

Parameter Value		Units	
Lower Frequency	2.7	GHz	
Upper Frequency	3.5		
Power Output	75	W	
Package Flange		_	

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value

Table 2.

Character Code	Code Value
A	0
В	1
C	2
D	3
E	4
F	5
G	6
н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

8 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 1.0, 2022-9-20 https://www.macom.com/support

9

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA2735075F1	GaN HEMT	Each	GREATED THE
CMPA2735075F1-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

10

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support