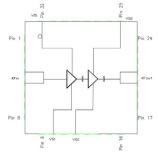


CMPA2735030S


30 W, 2.7 - 3.5 GHz, GaN MMIC, Power Amplifier

Description

The CMPA2735030S is a gallium nitride (GaN) high electron mobility transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity, and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier design approach enabling high power and power added efficiency to be achieved in a 5 mm x 5 mm, surface mount (QFN package).

Package Types: 5x5 mm PN's: CMPA2735030S

Features

- 32 dB small signal gain
- Operation up to 50 V
- High breakdown voltage
- High temperature operation
- 5 mm x 5 mm total product size

Applications

• Civil and military pulsed radar amplifiers

Parameter	2.7 GHz	2.9 GHz	3.1 GHz	3.3 GHz	3.5 GHz	Units
Small Signal Gain	33.8	32.9	32.9	33.5	33.4	dB
Output Power ¹	36.5	39.7	40.6	36.0	27.8	W
Power Gain ¹	27.6	28.0	28.1	27.6	26.4	dB
PAE ¹	57	53	51	51	45	%

Typical Performance Over 2.7 - 3.5 GHz ($T_c = 25 \text{ °C}$)

Note:

 1 P_{IN} = 18 dBm, pulse width = 100 µs; duty cycle = 10%.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

Absolute Maximum Ratings (Not Simultaneous) at 25 °C

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	150	V _{DC}	25 °C
Gate-Source Voltage	V _{gs}	-10, +2	V _{DC}	25 °C
Storage Temperature	T _{stg}	-65, +150	°C	
Maximum Forward Gate Current	١ _G	15.5	mA	25 °C
Soldering Temperature	T _s	260	°C	

Electrical Characteristics (Frequency = 2.7 GHz to 3.5 GHz Unless Otherwise Stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V	$V_{\rm DS} = 10 \text{ V}, \text{ I}_{\rm D} = 7.6 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	-	-2.7	-	V _{DC}	$V_{_{DS}}$ = 50 V, $V_{_{DQ}}$ = 135 mA
Saturated Drain Current ¹	I _{DS}	-	4.6	-	А	$V_{_{DS}} = 6.0 \text{ V}, V_{_{GS}} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	-	150	-	V	$V_{gs} = -8 \text{ V}, \text{ I}_{p} = 7.6 \text{ mA}$
RF Characteristics ^{2, 3}						
Small Signal Gain	S21 ₁	-	33.8	-	dB	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 135 mA, Frequency = 2.7 GHz
Small Signal Gain	S21 ₂	-	32.9	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 135 \text{ mA}, \text{Frequency} = 3.1 \text{ GHz}$
Small Signal Gain	S21 ₃	-	33.4	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 135 \text{ mA}, \text{ Frequency} = 3.5 \text{ GHz}$
Power Output	P _{OUT1}	-	36.5	-	w	$V_{DD} = 50 \text{ V}, I_{DQ} = 135 \text{ mA}, P_{IN} = 21 \text{ dBm},$ Frequency = 2.7 GHz
Power Output	P _{OUT2}	-	40.6	-	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 135 \text{ mA}, P_{IN} = 21 \text{ dBm},$ Frequency = 3.1 GHz
Power Output	P _{OUT3}	-	27.8	-	W	$V_{_{DD}}$ = 50 V, I $_{_{DQ}}$ = 135 mA, $P_{_{IN}}$ = 21 dBm, Frequency = 3.5 GHz
Power Added Efficiency	PAE ₁	-	57	-	%	$V_{_{DD}}$ = 50 V, I $_{_{DQ}}$ = 135 mA, Frequency = 2.7 GHz
Power Added Efficiency	PAE ₂	-	51	-	%	$V_{DD} = 50$ V, $I_{DQ} = 135$ mA, Frequency = 3.1 GHz
Power Added Efficiency	PAE ₃	-	45	-	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 135 \text{ mA}, \text{ Frequency} = 3.5 \text{ GHz}$
Input Return Loss	\$11 ₁	_	-18.2	-	dB	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 135 mA, Frequency = 2.7 GHz
Input Return Loss	S11 ₂	-	-13.4	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 135 \text{ mA}, \text{Frequency} = 3.1 \text{ GHz}$
Input Return Loss	S11 ₃	-	-27.0	-	dB	$V_{_{DD}} = 50 \text{ V}, I_{_{DQ}} = 135 \text{ mA}, \text{ Frequency} = 3.5 \text{ GHz}$
Output Return Loss	S22 ₁	-	-14.9	-	dB	$V_{_{DD}} = 50 \text{ V}, \text{ I}_{_{DQ}} = 135 \text{ mA}, \text{ Frequency} = 2.7 \text{ GHz}$
Output Return Loss	\$22 ₂	-	-9.5	-	dB	$V_{_{DD}} = 50 \text{ V}, \text{ I}_{_{DQ}} = 135 \text{ mA}, \text{ Frequency} = 3.1 \text{ GHz}$
Output Return Loss	S22 ₃	_	-16.5	-	dB	$V_{_{DD}} = 50 \text{ V}, I_{_{DQ}} = 135 \text{ mA}, \text{ Frequency} = 3.5 \text{ GHz}$
Output Mismatch Stress	VSWR	-	5:1	_	Ψ	No Damage at All Phase Angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 135 \text{ mA}, P_{IN} = 18 \text{ dBm}$

Notes:

2

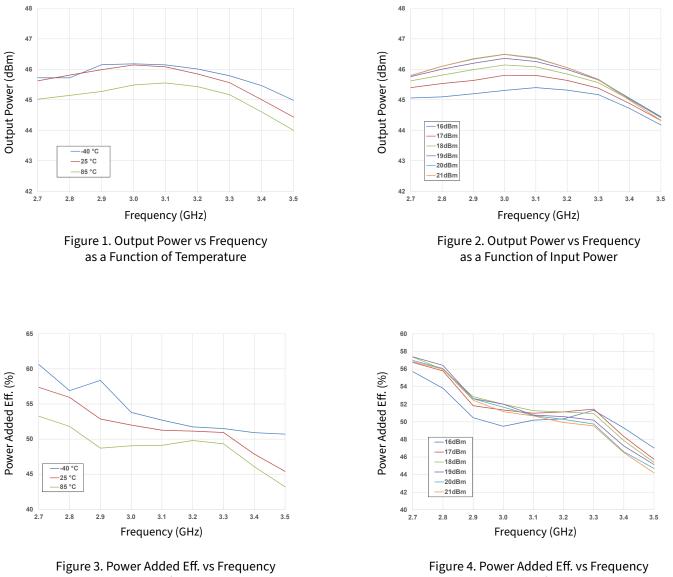
¹ Scaled from PCM data.

²Measured in CMPA2735030S high volume test fixture at 2.7, 3.1, and 3.5 GHz and may not show the full capability of the device due to source inductance and thermal performance.

³ Pulse width = 25 μ s; duty cycle = 1%.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Thermal Characteristics

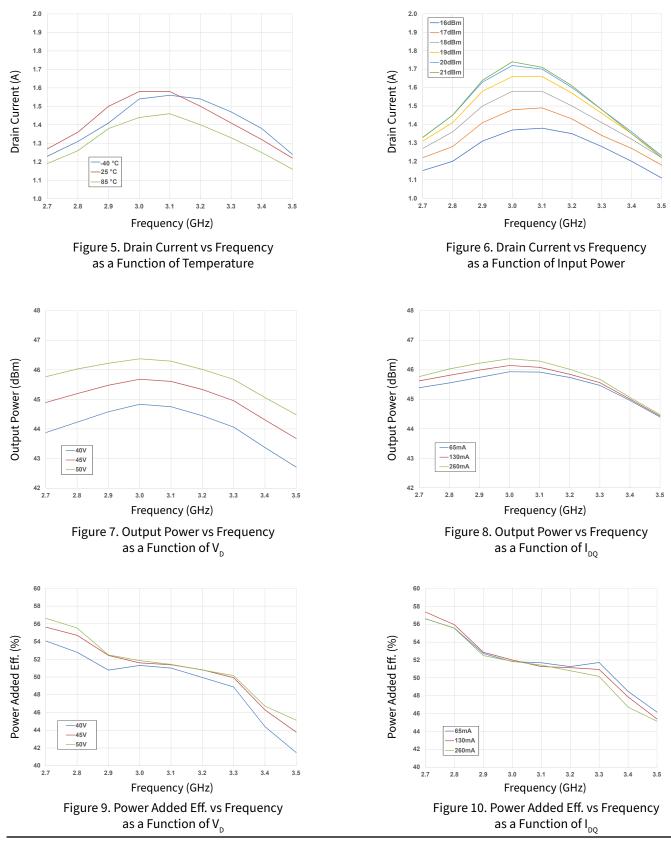

Parameter	Symbol	Rating	Units	Conditions
Operating Junction Temperature	T,	225	°C	
Thermal Resistance, Junction to Case (Packaged) ¹	R _{ejc}	2.62	°C/W	Pulse Width = 500 μ s, Duty Cycle = 10%

Notes:

 1 Measured for the CMPA2735030S at P_{_{\text{DISS}}} = 32 W.

Typical Performance of the CMPA2735030S

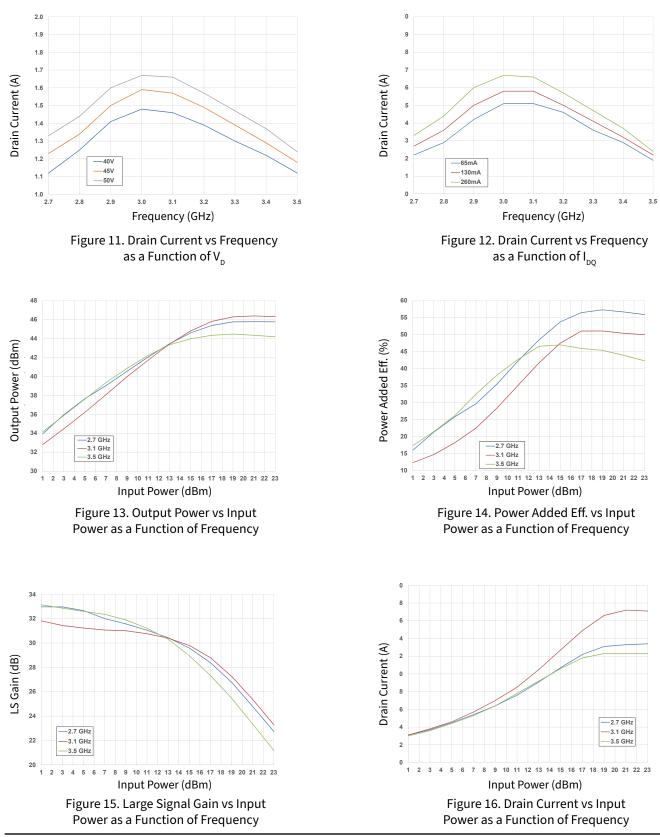
Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DO} = 130 \text{ mA}$, PW = 100 μ s, DC = 10%, $P_{IN} = 18 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$


as a Function of Temperature

as a Function of Input Power

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 0.4, SEPTEMBER 2023

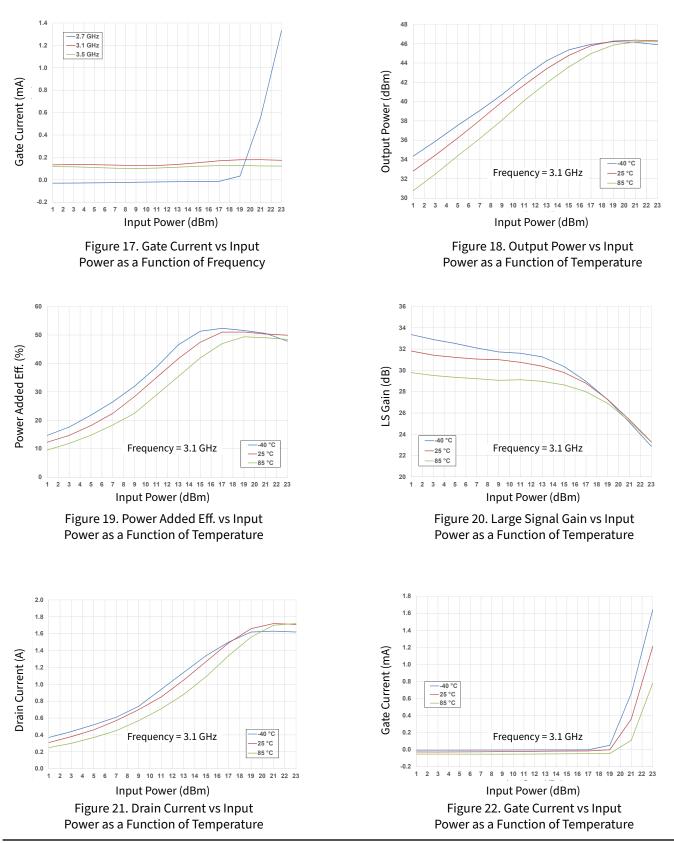
Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DO} = 130 \text{ mA}$, PW = 100 μ s, DC = 10%, $P_{IN} = 18 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 0.4, SEPTEMBER 2023

https://www.macom.com/support

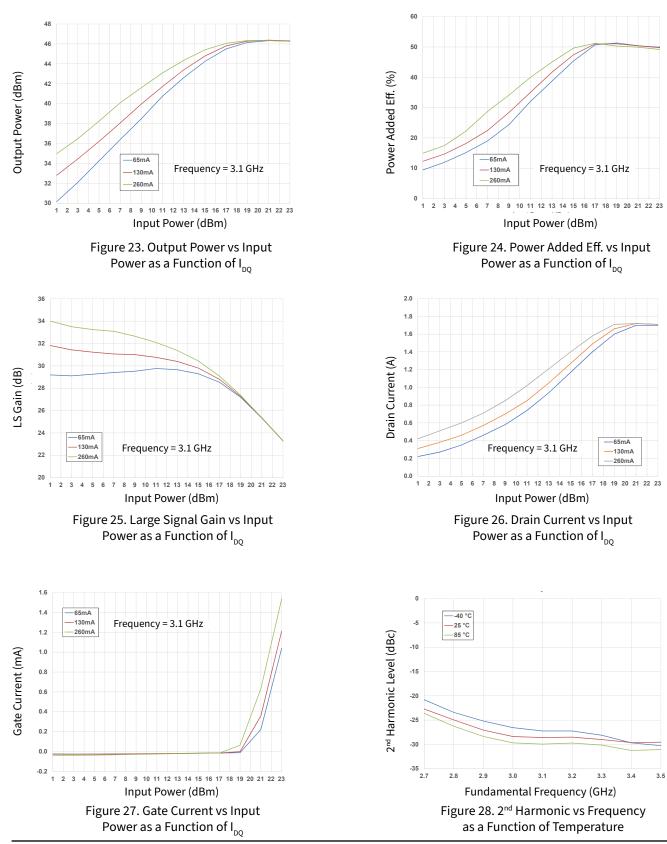
Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DO} = 130 \text{ mA}$, PW = 100 μ s, DC = 10%, $P_{IN} = 18 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit:

https://www.macom.com/support

Test conditions unless otherwise noted: $V_{D} = 50 \text{ V}$, $I_{DO} = 130 \text{ mA}$, PW = 100 μ s, DC = 10%, $P_{IN} = 18 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$



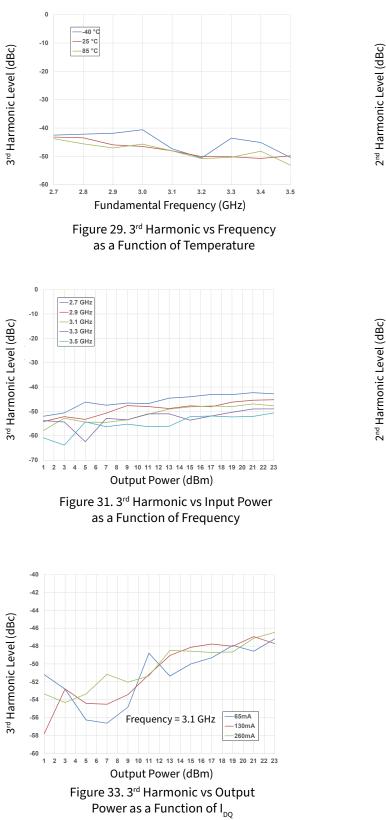
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit:

https://www.macom.com/support

Test conditions unless otherwise noted: $V_{D} = 50 \text{ V}$, $I_{DO} = 130 \text{ mA}$, PW = 100 μ s, DC = 10%, $P_{IN} = 18 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. Rev. 0.4, SEPTEMBER 2023 For further information and support please visit:

https://www.macom.com/support



Test conditions unless otherwise noted: $V_D = 50 \text{ V}$, $I_{DO} = 130 \text{ mA}$, PW = 100 μ s, DC = 10%, $P_{IN} = 18 \text{ dBm}$, $T_{BASE} = +25 \text{ °C}$

0

-5

-2.7 GHz

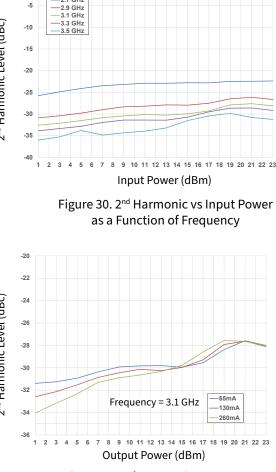
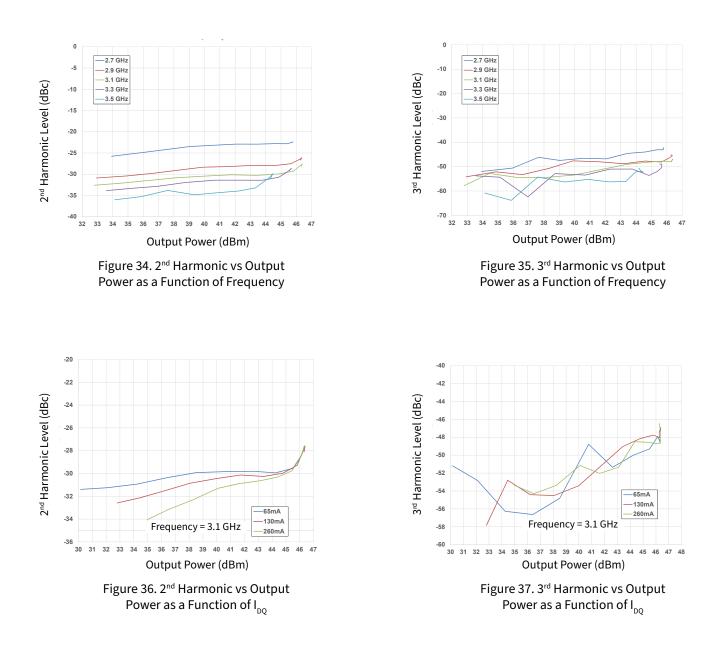
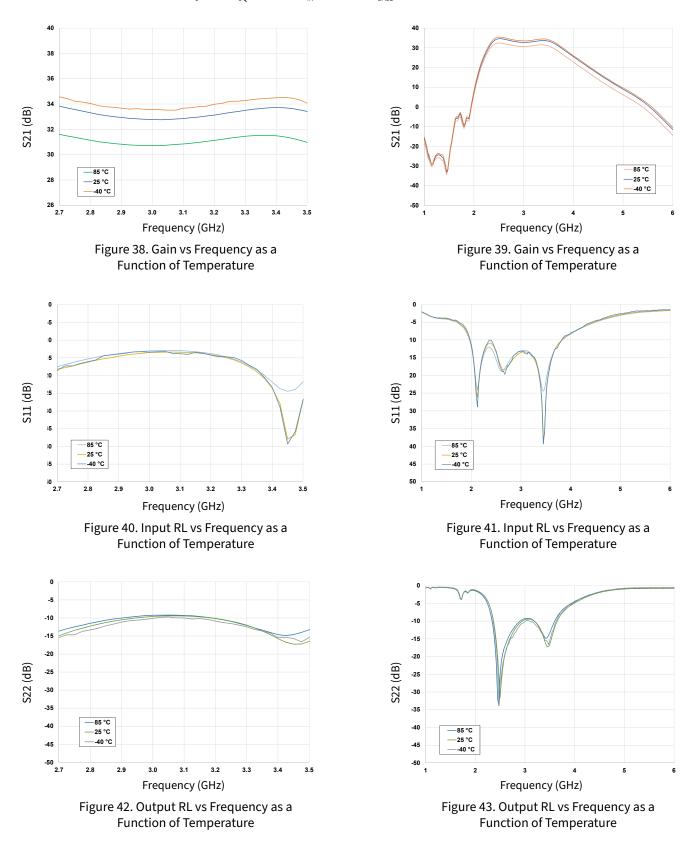


Figure 32. 2nd Harmonic vs Output Power as a Function of I_{DO}

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: Rev. 0.4, SEPTEMBER 2023

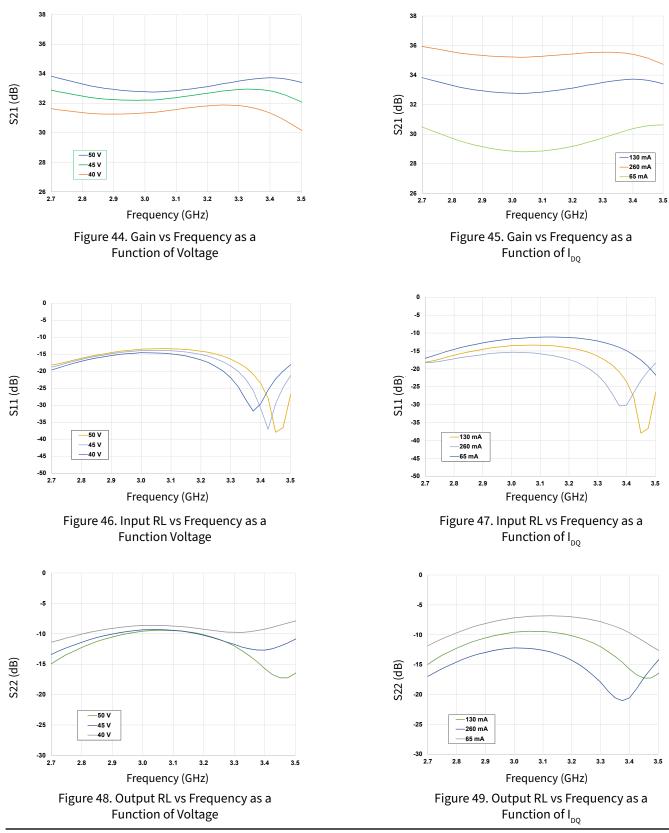

9

https://www.macom.com/support


Typical Performance of the CMPA2735030S

Test conditions unless otherwise noted: $V_{_{D}}$ = 50 V, $I_{_{DQ}}$ = 130 mA, $P_{_{IN}}$ = -20 dBm, $T_{_{BASE}}$ = +25 °C

Test conditions unless otherwise noted: V_{D} = 50 V, I_{DO} = 130 mA, P_{IN} = -20 dBm, T_{BASE} = +25 °C

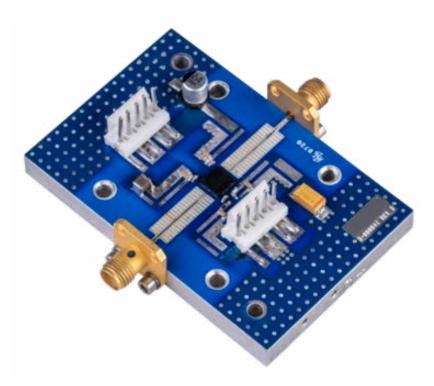

10 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit:

https://www.macom.com/support

Typical Performance of the CMPA2735030S

Test conditions unless otherwise noted: $V_{_{D}}$ = 50 V, $I_{_{DQ}}$ = 130 mA, $P_{_{IN}}$ = -20 dBm, $T_{_{BASE}}$ = +25 °C

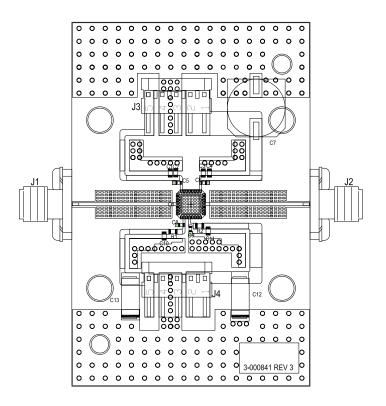
11 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 0.4, SEPTEMBER 2023


CMPA2735030S

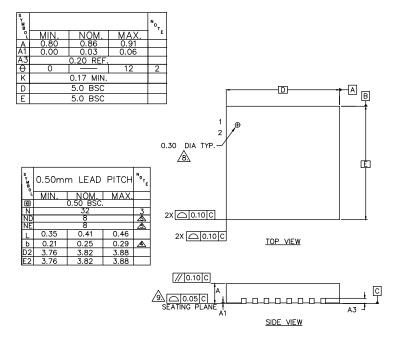
CMPA2735030S-AMP1 Evaluation Board Bill of Materials

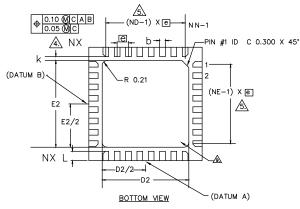
Designator	Description	Qty
C1, C4, C10, C11	CAP, 470 pF, 100 V, 0603	4
C2, C3	CAP, 100 pF, 100 V, 0603	2
C5, C6, C8, C9	CAP, 10 pF, 100 V, 0402	4
C7	CAP, 33 uF, 50 V, ELECT, MVY, SMD	1
C12, C13	CAP, 10 uF, 16 V, TANTALUM, SMD	2
R1, R2	RES, 100 Ohm, 1/16 W, 0603	2
J1, J2	CONNECTOR, N-TYPE, FEMALE, W/0.500 SMA FLNG	2
J3, J4	CONNECTOR, HEADER, RT>PLZ .1CEN LK 5POS	2
-	PCB, RO4350B, E _R = 3.48, h = 10 mil	1
Q1	CMPA2735030S	1


CMPA2735030S-AMP1 Evaluation Board

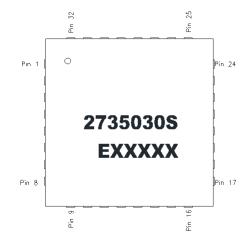

12 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 0.4, SEPTEMBER 2023

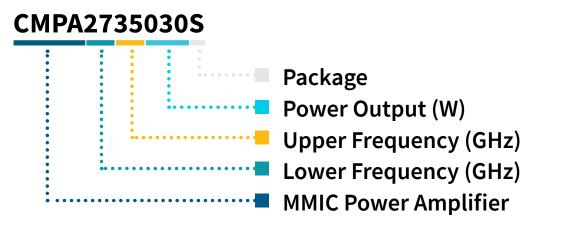
CMPA2735030S-AMP1 Application Circuit


CMPA2735030S-AMP1 Evaluation Board Layout



13 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.


Product Dimensions CMPA2735030S (Package)


PIN	DESC.	PIN	DESC.	PIN	DESC.
1	NC	15	NC	29	NC
2	NC	16	NC	30	NC
3	NC	17	NC	31	NC
4	RFIN	18	NC	32	VD1
5	RFIN	19	NC		
6	NC	20	RFOUT		
7	NC	21	RFOUT		
8	NC	22	NC		
9	NC	23	NC		
10	VG1	24	NC		
11	NC	25	VD2		
12	VG2	26	NC		
13	NC	27	NC		
14	NC	28	NC		

https://www.macom.com/support

Part Number System

Table 1.

Parameter	Value	Units
Lower Frequency	2.7	GHz
Upper Frequency	3.5	GHz
Power Output	30	W
Package	Surface Mount	-

Note:

Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

15 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA2735030S	GaN HEMT	Each	and and the first
CMPA2735030S-AMP1	Test Board with GaN MMIC Installed	Each	

16 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 0.4, SEPTEMBER 2023

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY. EXPRESS OR IMPLIED. RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹⁷ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 0.4, SEPTEMBER 2023 For further information and support please visit: