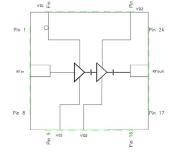


CMPA2735015S 15 W, 2.7 - 3.5 GHz, GaN MMIC, Power Amplifier

Description

The CMPA2735015S is a gallium nitride (GaN) high electron mobility transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a twostage reactively matched amplifier design approach enabling high power and power added efficiency to be achieved in a 5 mm x 5 mm, surface mount (QFN package).


Package Types: 5 x 5 mm PN's: CMPA2735015S

Features

- 33 dB small signal gain
- 21 W typical P_{SAT}
- Operation up to 50 V
- High breakdown voltage
- High temperature operation
- 5 mm x 5 mm total product size

Applications

Civil and military pulsed radar amplifiers

Typical Performance Over 2.7 - 3.5 GHz ($T_c = 25$ °C)

Parameter	2.7 GHz	2.9 GHz	3.1 GHz	3.3 GHz	3.5 GHz	Units
Small Signal Gain	35	34	34	34	33	dB
Saturated Output Power	21	21	24	25	22	W
Power Gain	27.3	27.2	27.9	27.9	27.5	dB
Power Added Efficiency	56	53	49	48	50	%

Note:

1

 P_{IN} = 16 dBm, pulse width = 500 µs; duty cycle = 10%.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit.

Absolute Maximum Ratings (Not Simultaneous) at 25 °C

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	150	V	
Gate-Source Voltage	V _{GS}	-10, +2	V	
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T,	225	°C	
Maximum Forward Gate Current	I _{GMAX}	0.0038	A	
Maximum Drain Current ¹	I _{DMAX}	3.53	A	
Thermal Resistance, Junction to Case⁵	R _{θJC}	5.05	°C/W	85 °C
Case Operating Temperature ^{3,4}	T _c	-40, +150	°C	25 °C Ambient
Soldering Temperature ²	T _s	245	°C	

Notes:

¹ Current limit for long term, reliable operation.

²Refer to the Application Note on soldering

³ Simulated at $P_{DISS} = 15$ W.

⁴T_c = Case temperature for the device. It refers to the temperature at the ground tab underneath the package. The PCB will add additional thermal resistance.

 $^{\scriptscriptstyle 5}$ Pulsed (300 $\mu s,$ 20%), for steady state operation, the $R_{_{\theta JC}}$ increases to 7.2 °C/W.

Electrical Characteristics (Frequency = 2.9 GHz to 3.5 GHz Unless Otherwise Stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics	·					
Gate Threshold Voltage	V _{GS(TH)}	-3.8	-3.0	-2.3	V	$V_{\rm DS} = 10 \text{ V}, \text{ I}_{\rm D} = 3 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	-	-2.7	-	V _{DC}	$V_{\rm DD} = 50 \text{ V}, \text{ I}_{\rm DQ} = 80 \text{ mA}$
Saturated Drain Current ¹	I _{DS}	2.5	3.5	-	А	$V_{\rm DS} = 6.0 \text{ V}, V_{\rm GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	100	-	-	V	$V_{gs} = -8 \text{ V}, \text{ I}_{p} = 3 \text{ mA}$
RF Characteristics ^{2,3}						
Small Signal Gain ₁	S21	-	35	-	dB	$V_{_{DD}}$ = 50 V, I $_{_{DQ}}$ = 80 mA, Freq = 2.7 GHz
Small Signal Gain ₂	S21	-	34	-	dB	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 80 mA, Freq = 3.1 GHz
Small Signal Gain ₃	S21	-	33	-	dB	V _{DD} = 50 V, I _{DQ} = 80 mA, Freq = 3.5 GHz
Power Output ₁	P _{out}	-	21	-	W	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 80 \text{ mA}, \text{ P}_{IN} = 16 \text{ dBm}, \text{ Freq} = 2.7 \text{ GHz}$
Power Output ₂	P _{OUT}	-	24	-	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 80 \text{ mA}, P_{IN} = 16 \text{ dBm}, \text{ Freq} = 3.1 \text{ GHz}$
Power Output ₃	P _{out}	-	22	-	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 80 \text{ mA}, P_{IN} = 16 \text{ dBm}, \text{ Freq} = 3.5 \text{ GHz}$
Power Added Efficiency ₁	PAE	-	56	-	%	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 80 \text{ mA}, \text{ Freq} = 2.7 \text{ GHz}$
Power Added Efficiency ₂	PAE	-	49	-	%	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 80 \text{ mA}, \text{ Freq} = 3.1 \text{ GHz}$
Power Added Efficiency ₃	PAE	-	50	-	%	V _{DD} = 50 V, I _{DQ} = 80 mA, Freq = 3.5 GHz
Power Gain	G _P	-	27	-	dB	V _{DD} = 50 V, I _{DQ} = 80 mA
Input Return Loss	S11	-	-8	-	dB	V _{DD} = 50 V, I _{DQ} = 80 mA
Output Return Loss	S22	-	-7	-	dB	V _{DD} = 50 V, I _{DQ} = 80 mA
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No Damage at All Phase Angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 80 \text{ mA}, P_{OUT} = 15 \text{ W Pulsed}$

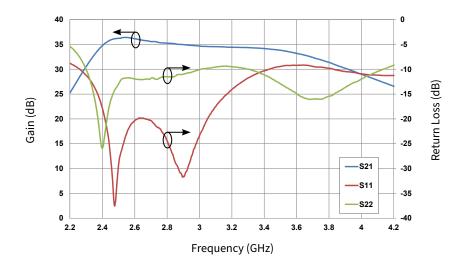
Notes:

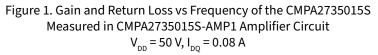
2

¹Scaled from PCM data.

²All data test

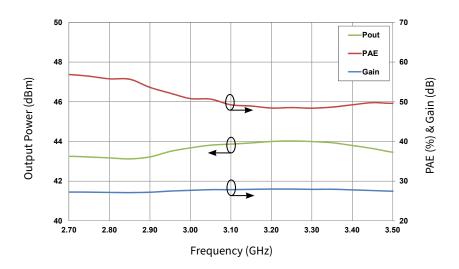
²All data tested in CMPA2735015S-AMP1.

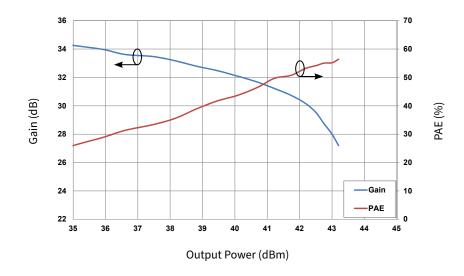

 3 Pulse width = 500 μ s; duty cycle = 10%.

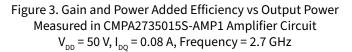

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

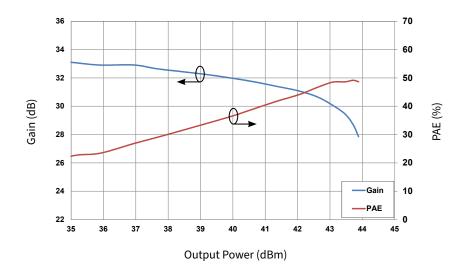
For further information and support please visit: <u>https://www.macom.com/support</u>

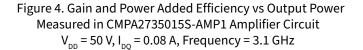
Typical Performance of the CMPA2735015S



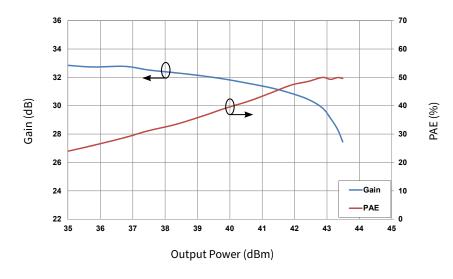

Figure 2. Output Power, Gain and PAE vs Frequency of the CMPA2735015S Measured in CMPA2735015S-AMP1 Amplifier Circuit $V_{DD} = 50 \text{ V}, I_{DO} = 0.08 \text{ A}, \text{Pulse Width} = 500 \ \mu\text{S}, \text{Duty Cycle} = 10\%$

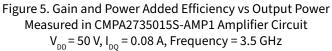

3


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Typical Performance of the CMPA2735015S

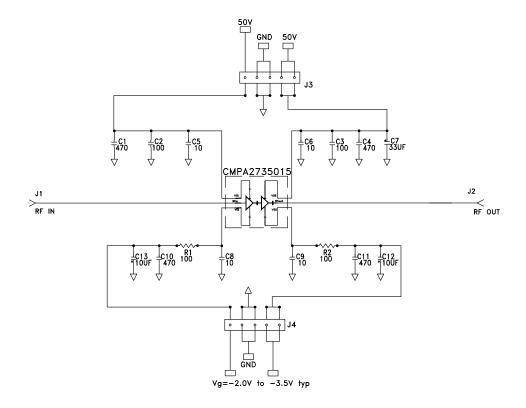



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

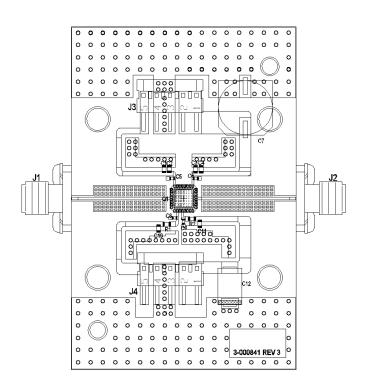
4

Typical Performance of the CMPA2735015S

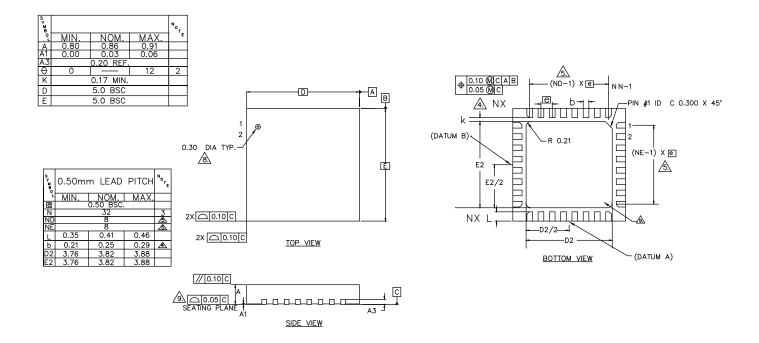
CMPA2735015S-AMP1 Demonstration Amplifier Circuit Bill of Materials

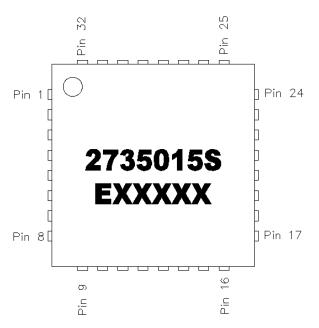

Designator	Description	Qty
C1, C4, C10, C11	CAP, 470 pF, 100 V, 0603	1
C2, C3	CAP, 100 pF, 100 V, 0603	1
C5, C6, C8, C9	CAP, 10 pF, 100 V, 0402	1
C7	CAP, 33 uF, 50 V, ELECT, MVY, SMD	1
C12,C13	CAP, 10 uF, 16 V, TANTALUM, SMD	2
R1, R2	RES, 100 Ohm, 1/16 W, 0603	2
J1, J2	CONNECTOR, N-TYPE, FEMALE, W/0.500 SMA FLNG	1
J3, J4	CONNECTOR, HEADER, RT>PLZ .1CEN LK 5POS	1
_	PCB, RO4350B, E _R = 3.48, h = 10 mil	1
Q1	CMPA2735015S	1

5 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.


6

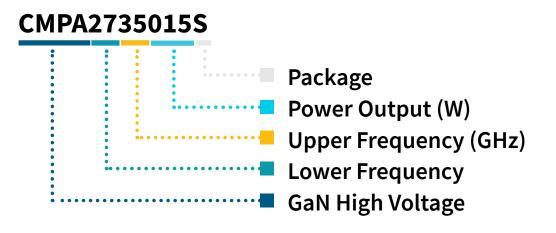
CMPA2735015S-AMP1 Demonstration Amplifier Circuit Schematic


CMPA2735015S-AMP1 Demonstration Amplifier Circuit Outline


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 0.5, SEPTEMBER 2023

Product Dimensions CMPA2735015S (Package)

Pin	Input/Output	
1,2,3	NC	
4	RF IN	
5	RF IN	
6, 7, 8, 9	NC	
10	VG1	
11	NC	
12	VG2	
13, 14, 15, 16	NC	
17,18,19	NC	
20	RF OUT	
21	RF OUT	
22, 23, 24	NC	
25	VD2	
26, 27, 28, 29	NC	
30, 31	NC	
32	VD1	



7 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

Part Number System

Table 1.

Parameter	Value	Units
Lower Frequency	2.7	GHz
Upper Frequency	3.5	GHz
Power Output	15	W
Package	Surface Mount	-

Note:

Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

8 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

9

Product Ordering Information

Order Number	lumber Description		Image	
CMPA2735015S	GaN HEMT	Each	omenors une ter	
CMPA2735015S-AMP1	Test Board with GaN HEMT Installed	Each		

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY. EXPRESS OR IMPLIED. RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

10

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 0.5, SEPTEMBER 2023 For further information and support please visit: