

CMPA2060035F

35 W, 2.0 - 6.0 GHz, GaN MMIC Power Amplifier

Description

The CMPA2060035F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC contains a two-stage reactively matched amplifier enabling very wide bandwidths to be achieved in a small footprint screw-down package featuring a Copper-Tungsten heat-sink.

PN: CMPA2060035F Package Type: 440219

Typical Performance Over 2.0-6.0 GHz, 28 V ($T_c = 25^{\circ}$ C)

Parameter	2.0 GHz	4.0 GHz	6.0 GHz	Units
Small Signal Gain	24.8	26.5	25.0	dB
Output Power ¹	30.0	44.7	32.5	W
Power Gain ¹	17.7	19.5	18.1	dB
Power Added Efficiency ¹	43	47	36	%

Note:

Features

- 28 dB Small Signal Gain
- 35 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation

Applications

- Ultra Broadband Amplifiers
- Fiber Drivers
- Test Instrumentation
- · EMC Amplifier Drivers

 $^{^{1}}$ V_{DD} = 28 V, I_{DQ} = 1.2 A, P_{IN} = 27 dBm. All data tested CW

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	84	V	
Gate-Source Voltage	V _{GS}	-10, +2	V _{DC}	
Storage Temperature	T _{STG}	-65, +150	0.0	
Operating Junction Temperature	TJ	225	°C	
Forward Gate Current	I _G	16	mA	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	$R_{\theta JC}$	2.06	°C/W	85°C, P _{DISS} = 65 W, CW
Case Operating Temperature	T _C	-40, +150	°C	

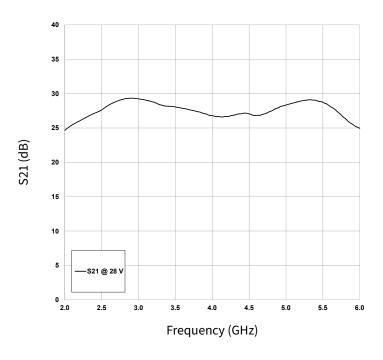
Electrical Characteristics (Frequency = 2.0 GHz to 6.0 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ^{1,2}						
Gate Quiescent Voltage	V _{(GS)TH}	-3.4	-3.0	-2.7	V	V _{DS} = 10 V, I _D = 16.5 mA
Gate Quiescent Voltage	V _{(GS)Q}	_	-2.6	_	V _{DC}	V _{DD} = 28 V, I _D = 1.2 A
Saturated Drain Current ¹	I _{DS}	11.9	16.5	_	А	V _{DS} = 6.0 V, V _{GS} = 2.0 V
Drain-Source Breakdown Voltage	V _{BD}	84	_	_	V	V _{GS} = -8 V, I _{DS} = 16.5 mA
RF Characteristics ^{3,4,5}						
Small Signal Gain	S21	22.2	26.5	_		
Input Return Loss	S11	_	-11	4	dB	
Output Return Loss	S22	_	-11.6	-4		
Output Power at 2.0 GHz		23.7	30.0	_		
Output Power at 4.0 GHz	P _{out}	34.3	44.7	_	w	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.2 \text{ A}$
Output Power at 6.0 GHz		23.7	32.5	_		
Power Added Efficiency at 2.0 GHz		34.5	43	_		
Power Added Efficiency at 4.0 GHz	PAE	37	47	_	%	
Power Added Efficiency at 6.0 GHz		23	36	_]	
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}, I_{DQ} = 1.2 \text{ A}, P_{IN} = 27 \text{ dBm}$

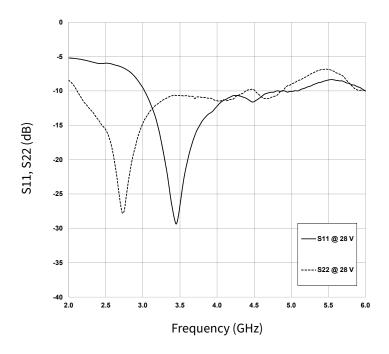
Notes:

¹ Measured on-wafer prior to packaging

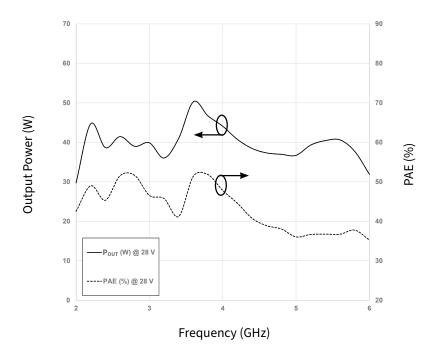
² Scaled from PCM data

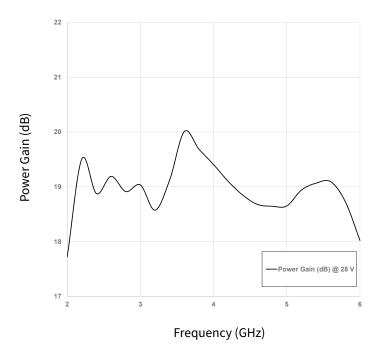

³ Measured in CMPA2060035F-AMP

 $^{^4}$ Measured at P_{IN} = 27 dBm


⁵ Tested CW

Typical Performance


Figure 1. CMPA2060035F S21 vs. Frequency $I_{DO} = 1.2 \text{ A}$


Figure 2. CMPA2060035F Return Losses vs. Frequency $I_{DQ} = 1.2 \text{ A}$

Typical Performance

Figure 3. CMPA2060035F Output Power and Power Added Efficiency vs. Frequency $I_{DQ} = 1.2$ A, Case Temperature = 25°C, Power Input = 27 dBm

Figure 4. CMPA2060035F Power Gain vs. Frequency $I_{DQ} = 1.2 \text{ A}$

Typical Performance

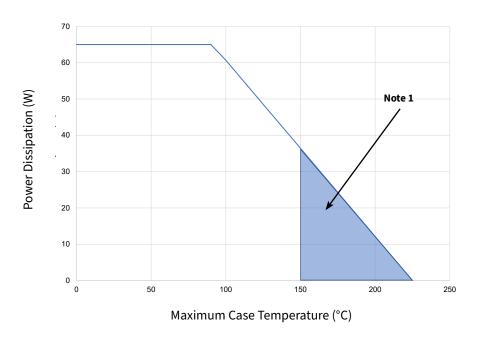
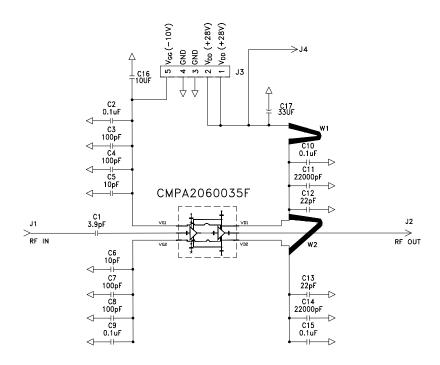
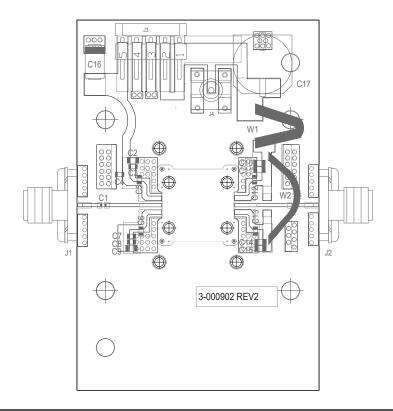


Figure 5. CMPA2060035F CW Power Dissipation De-rating Curve

Notes:

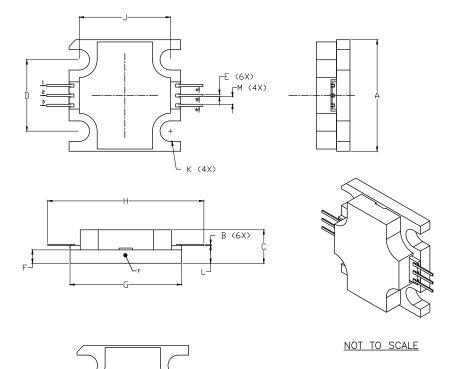

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1A	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C


 $^{^{\}rm 1}\,{\rm Area}$ exceeds Maximum Case Operating Temperature (See Page 2).

CMPA2060035F-AMP Demonstration Amplifier Circuit Schematic

CMPA2060035F-AMP Demonstration Amplifier Circuit Outline



CMPA2060035F-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
	PCB	1
Q1	CMPA2060035F, 2.0-6.0GHz, GaN MMIC	1
C1	CAP, 3.9pF, +/-0.1pF, 0402, ATC	1
C2, C9, C10, C15	CAP CER 0.1µF 100V 10% X7R 0805	4
C3, C4, C7, C8	CAP, 100.0pF, +/-5%, 0603, ATC	4
C5, C6	CAP, 10.0pF, +/-5%, 0603, ATC	2
C11, C14	CAP CER 22,000pF 100V 10% X7R 0805	2
C12, C13	CAP, 22pF,+/-5%, 0603, ATC	2
C16	CAP 10µF 16V TANTALUM, 2312	1
C17	CAP, 33μF, 20%, G CASE	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
J3	HEADER RT>PLZ .1CEN LK 5POS	1
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
W1, W2	WIRE, BLACK, 22 AWG	2
	WIRE ASSEMBLY, 5-PIN, MMIC HPA FIXTURES	1
	CLAMP, DELRIN	2
	2-56 SOC HD SCREW 3/16 SS	4
	2-56 SOC HD SCREW 1/2 SS	4
	PREFORM, INDIUM, 2 X 2 X 0.003" THK, WITH 0.0002" THK AL CLAD ON ONE SIDE	1
	TEST FIXTURE INSTRUCTIONS	1

Product Dimensions CMPA2060035F (Package Type — 440219)

NOTES:

- 1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.495	0.505	12.57	12.82	
В	0.003	0.005	0.076	0.127	
С	0.140	0.160	3.56	4.06	
D	0.315	0.325	8.00	8.25	
E	0.008	0.012	0.204	0.304	
F	0.055	0.065	1.40	1.65	
G	0.495	0.505	12.57	12.82	
Н	0.695	0.705	17.65	17.91	
J	0.403	0.413	10.24	10.49	
K	ø.	092	2.3	34	
L	0.075	0.085	1.905	2.159	
М	0.032	0.040	0.82	1.02	

, 0		
	PIN	Function
	1	Gate 1
	2	RF _{IN}
	3	Gate 2
	4	Drain 1

5

7

RF_{OUT}
Drain 2

Ground

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA2060035F	GaN MMIC	Each	CHIP LOS SES
CMPA2060035F-AMP	Test board with GaN MMIC installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.