

CMPA1E1F060F Rev. V1

Features

Saturated Power: 50 W
Power Added Efficiency: 38%
Large Signal Gain: 25 dB
Small Signal Gain: 29 dB
Input Return Loss: -16 dB
Output Return Loss: -10 dB

IM3: -25dBc (25W P_{total}) Pulsed/CW Operation

Applications

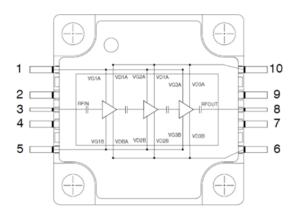
Satellite Uplink

Common Data Links

Description

MACOM's CMPA1E1F060F is a 50 W, MMIC HPA utilizing MACOM's high performance, 0.15 μ m GaN on SiC production process. The CMPA1E1F060F operates from 13.4 – 15.5 GHz and targets lower Ku-band radar applications, as well as, satellite uplinks and common datalink applications. Under saturation, the CMPA1E1F060F achieves 50 W of typical output with 25 dB of large signal gain and > 38% power-added efficiency. Targeting an IM3 level of -25 dBc or better, this HPA delivers 25 W of output power with 31 dB of gain and > 32% power-added efficiency.

Above stated performance is typical across frequency at 25°C. Please reference included specification tables and performance curves for additional details.


Packaged in a 15x15 mm bolt-down, flange package, the CMPA1E1F060F provides superior RF performance and thermal management allowing customers to improve SWaP-C benchmarks in their next-generation systems.

Ordering Information

Part Number	Package (MOQ/ Mult)
CMPA1E1F060F	Tray (10/10)
CMPA1E1F060F-AMP	Sample Board (1/1)

Functional Schematic

Pin Configuration¹

Pin #	Function
1, 5	VG
2, 4, 7, 9	RF/DC Ground
3	RF Input
6, 10	VD
8	RF Output

 The base of the package must be connected to RF, DC and thermal ground.

RF Electrical Specifications: $V_D = 28 \text{ V}$, $I_{DQ} = 650 \text{ mA}$, CW, $T_C = 25 ^{\circ}\text{C}$, $Z_0 = 50 \Omega$

Parameter	Test Conditions	Frequency (GHz)	Units	Min.	Тур.	Max.
Output Power		13.4 13.75 14.5 15.5	dBm	47.0 46.8 46.5 46.0	48 48 47.5 47	_
Power Added Efficiency	Pin = 22 dBm	13.4 13.75 14.5 15.5	%	30 30 29 29	37 36 35 36	1
Large Signal Gain		13.4 13.75 14.5 15.5	dB		26 26 25.5 25	I
Small Signal Gain			dB		29	1
Input Return Loss	Pin = -20 dBm	13.4 - 15.5	dB	_	-16	_
Output Return Loss			dB		-10	_
IM3	Pout/Tone=41dBm; Spacing=300MHz	13.75 14.5 15.5	dBc	_	-25 -25 -25	_

DC Electrical Specifications:

Parameter		Min.	Тур.	Max.
Drain Voltage		_	28	
Gate Voltage	V	_	-2.1	_
Quiescent Drain Current		325	650	1000
Saturated Drain Current		_	5.0	_

CMPA1E1F060F Rev. V1

Recommended Operating Conditions

Parameter	Symbol	Unit	Min.	Тур.	Max.
Input Power	P _{IN}	dBm		22	
Drain Voltage	V_D	V		28	
Gate Voltage	V_{G}	V		-2.1	
Quiescent Drain Current	I _{DQ}	mA		650	
Case Temperature	T _C	°C	-40		+85

Absolute Maximum Ratings^{2,3}

Parameter	Symbol	Unit	Min.	Max.
Input Power	P _{IN}	dBm		24
Drain to Source Breakdown Voltage	BV _{DS}	V		84
Drain Voltage	V_D	V		28
Gate Voltage	V_{G}	V	-8	+2
Drain Current	I _D	Α		7.8
Gate Current	I _G	mA		15
Dissipated Power @ +85°	P _{DISS}	W		101
VSWR		Ratio		5:1
Junction Temperature (MTTF > 1E6 Hrs)	TJ	°C		+225
Storage Temperature	T _{STG}	°C	-65	+150
Mounting Temperature (30 seconds)	T _M	°C		+260
Screw Torque	τ	in-oz		40

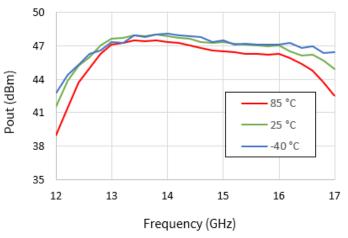
^{2.} Exceeding any one or combination of these limits may cause permanent damage to this device.

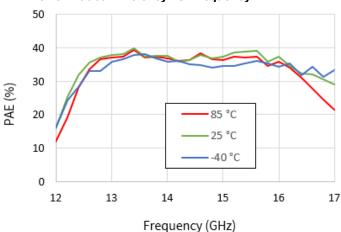
Handling Procedures

Please observe the following precautions to avoid damage:

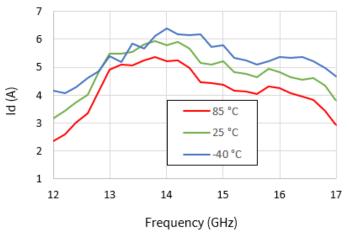
Static Sensitivity

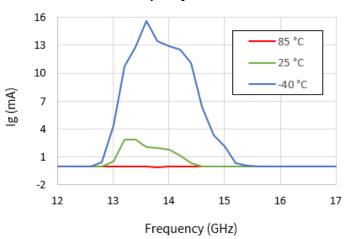
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

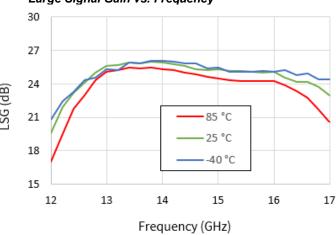

^{3.} MACOM does not recommend sustained operation near these survivability limits.


Typical Performance Curves - Large Signal over Temperature:

 $V_D = 28 \text{ V}, I_{DQ} = 650 \text{ mA}, CW, P_{IN} = 22 \text{ dBm}$


Output Power vs. Frequency

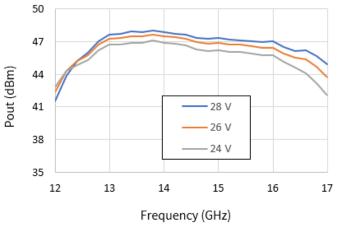

Power-Added Efficiency vs. Frequency

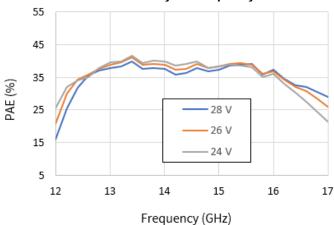

Drain Current vs. Frequency

Gate Current vs. Frequency

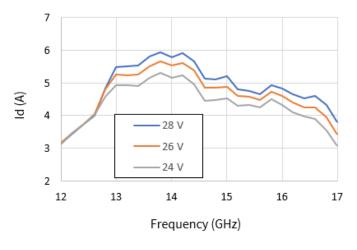
Large Signal Gain vs. Frequency

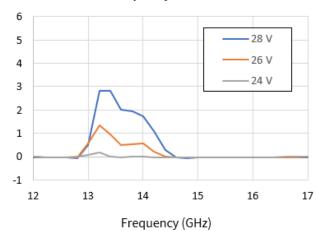
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

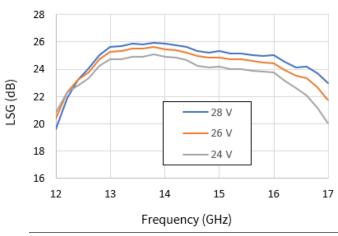

Visit www.macom.com for additional data sheets and product information.


Typical Performance Curves - Large Signal over V_D:

 I_{DQ} = 650 mA, CW, P_{IN} = 22 dBm, T_{C} =25°C


Output Power vs. Frequency


Power-Added Efficiency vs. Frequency

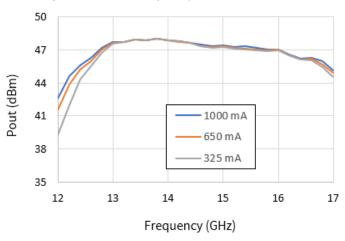

Drain Current vs. Frequency

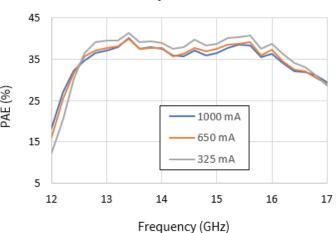
Gate Current vs. Frequency

Large Signal Gain vs. Frequency

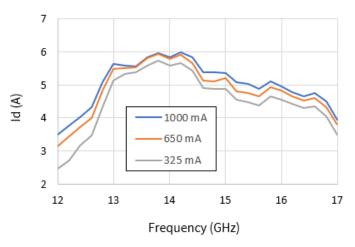
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

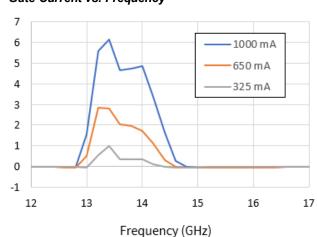
Visit www.macom.com for additional data sheets and product information.

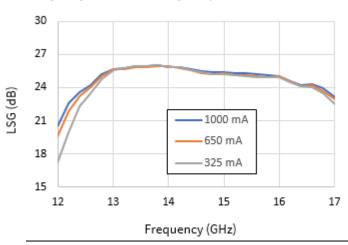

lg (mA)


Typical Performance Curves - Large Signal over IDQ:

 $V_D = 28 \text{ V}, \text{ CW}, P_{IN} = 22 \text{ dBm}, T_C = 25^{\circ}\text{C}$


Output Power vs. Frequency

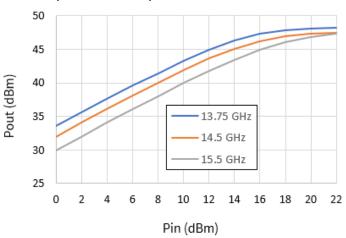

Power-Added Efficiency

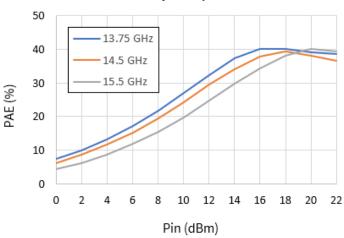

Drain Current vs. Frequency

Gate Current vs. Frequency

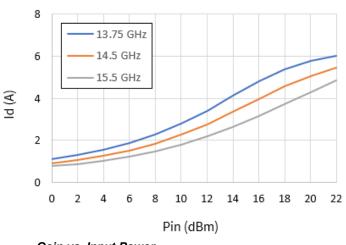
Large Signal Gain vs. Frequency

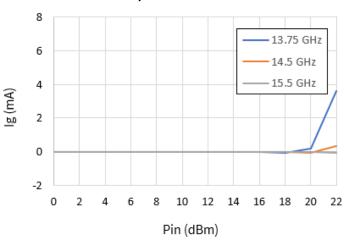
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

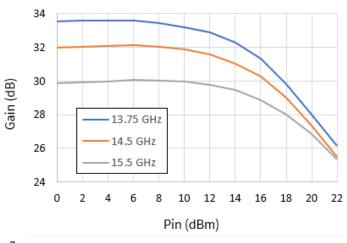

Visit www.macom.com for additional data sheets and product information.


Typical Performance Curves - Drive-Up over Frequency:

 $V_D = 28 \text{ V}, I_{DQ} = 650 \text{ mA}, \text{ CW}, T_C = 25^{\circ}\text{C}$


Output Power vs. Input Power

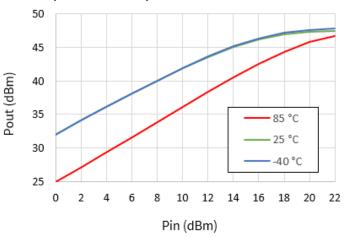

Power-Added Efficiency vs. Input Power

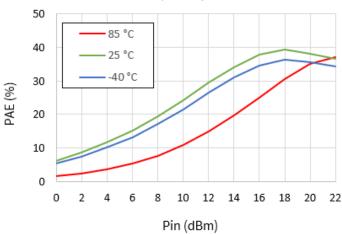

Drain Current vs. Input Power

Gate Current vs. Input Power

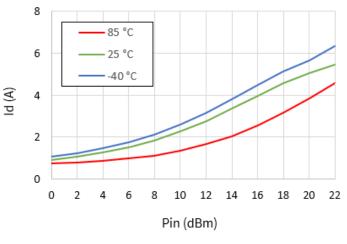
Gain vs. Input Power

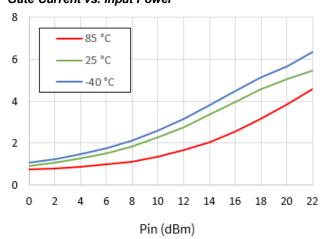
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

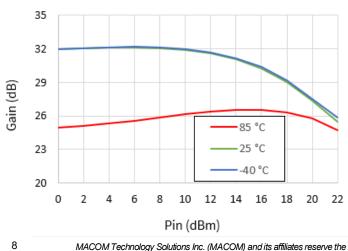

Visit www.macom.com for additional data sheets and product information.


Typical Performance Curves - Drive-Up over Temperature:

 V_D = 28 V, I_{DQ} = 650 mA, CW, Frequency: 14.5GHz


Output Power vs. Input Power


Power-Added Efficiency vs. Input Power

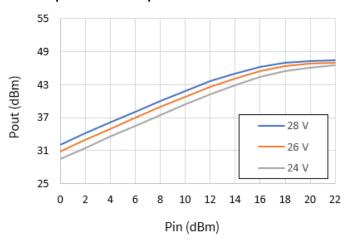

Drain Current vs. Input Power

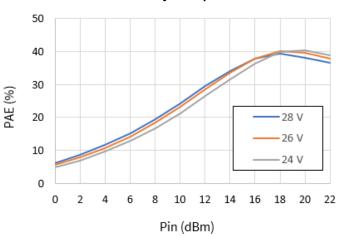
Gate Current vs. Input Power

Gain vs. Input Power

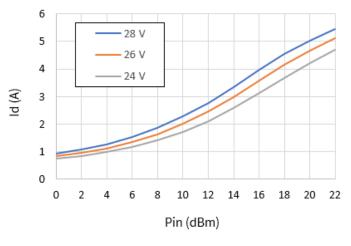
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

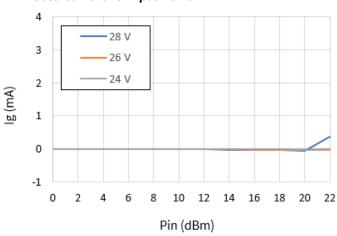
Visit www.macom.com for additional data sheets and product information.

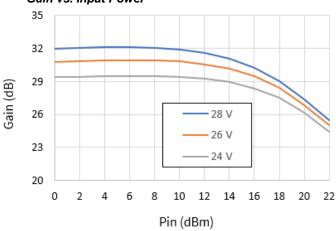

lg (mA)


Typical Performance Curves - Drive-Up over V_D:

 I_{DQ} = 650 mA, CW, T_{C} = 25°C, Frequency: 14.5GHz


Output Power vs. Input Power

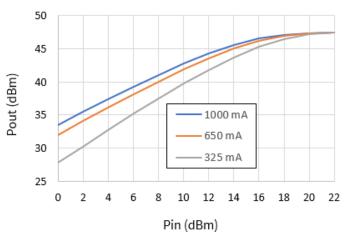

Power-Added Efficiency vs. Input Power

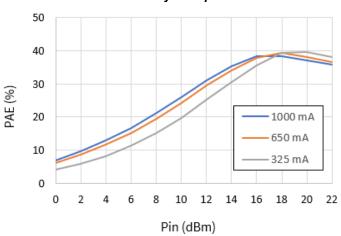

Drain Current vs. Input Power

Gate Current vs. Input Power

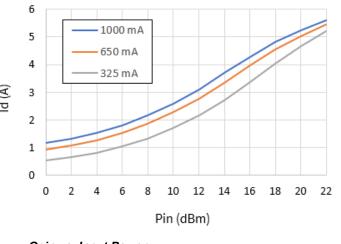
Gain vs. Input Power

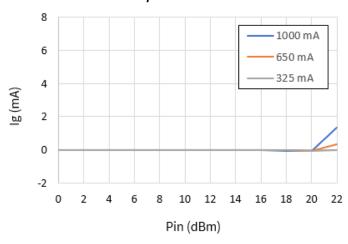
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

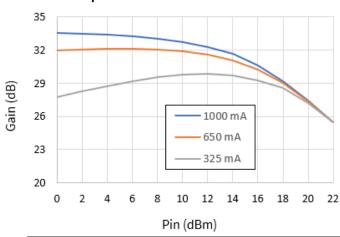

Visit www.macom.com for additional data sheets and product information.


Typical Performance Curves - Drive-Up over IDQ:

 $V_D = 28 \text{ V}$, CW, $T_C = 25^{\circ}\text{C}$, Frequency: 14.5GHz


Output Power vs. Input Power

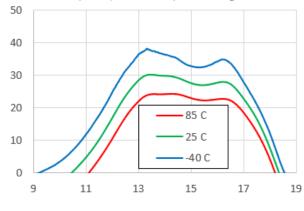

Power-Added Efficiency vs. Input Power


Drain Current vs. Input Power

Gate Current vs. Input Power

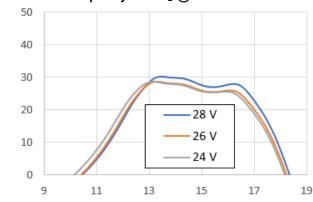
Gain vs. Input Power

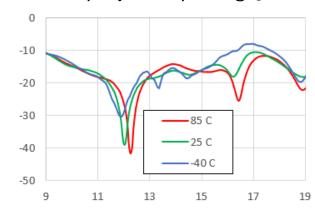




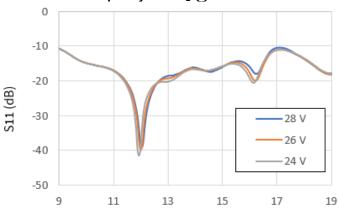
Typical Performance Curves - Small Signal over Temperature and $V_{\text{\tiny D}}$:

S21 (dB)

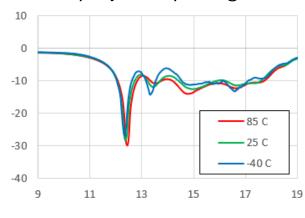

 I_{DQ} = 650 mA, CW, P_{IN} = -20 dBm


Frequency (GHz)

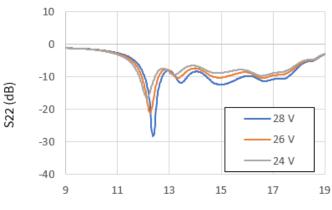
S21 vs. Frequency over V_D @ 25°C


Frequency (GHz)

S11 vs. Frequency over Temperature @ V_D = 28 V


Frequency (GHz)

S11 vs. Frequency over V_D @ 25°C


Frequency (GHz)

S22 vs. Frequency over Temperature @ V_D = 28 V

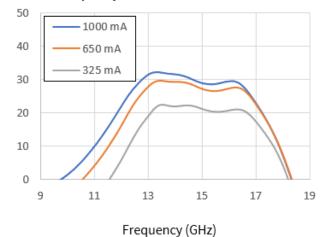
Frequency (GHz)

S22 vs. Frequency over V_D @ 25°C

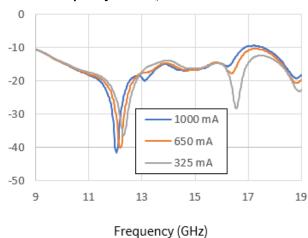
Frequency (GHz)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

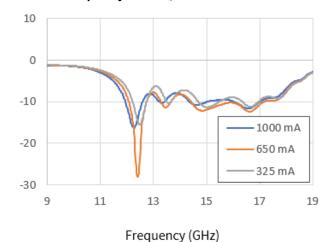
Visit www.macom.com for additional data sheets and product information.


11

Typical Performance Curves - Small Signal over IDQ:


 $V_D = 28 \text{ V}, \text{ CW}, P_{IN} = 22 \text{ dBm}, T_C = 25^{\circ}\text{C}$

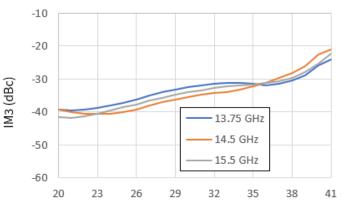
S21 vs. Frequency over IDQ



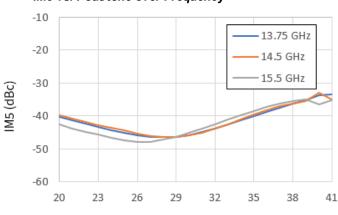
S11 vs. Frequency over IDQ

S11 (dB)

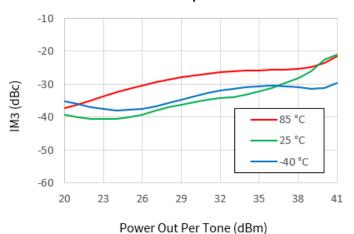
S22 vs. Frequency over IDQ



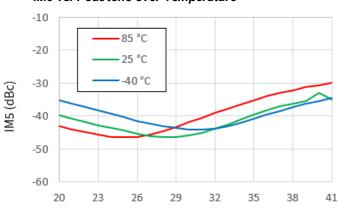
Typical Performance Curves - Linearity (IM3 and IM5)


 V_D = 28 V, I_{DQ} = 650 mA, CW, P_{OUT} = 43 dBm, Frequency = 14.5 GHz, Tone Spacing = 10MHz, T_C = 25°C

IM3 vs. Pout/tone over Frequency


Power Out Per Tone (dBm)

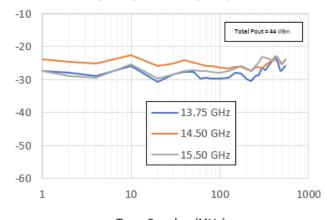
IM5 vs. Pout/tone over Frequency



Power Out Per Tone (dBm)

IM3 vs. Pout/tone over Temperature

IM5 vs. Pout/tone over Temperature



Power Out Per Tone (dBm)

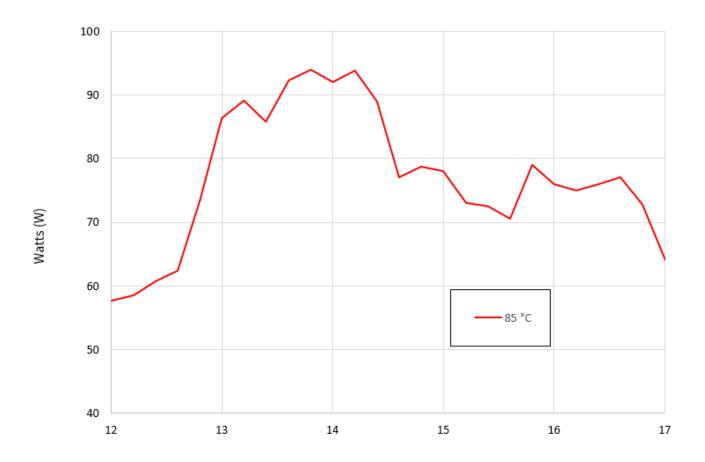
IM3 vs. Pout/tone over Idq

IM3 vs. Tone Spacing over Frequency

Tone Spacing (MHz)

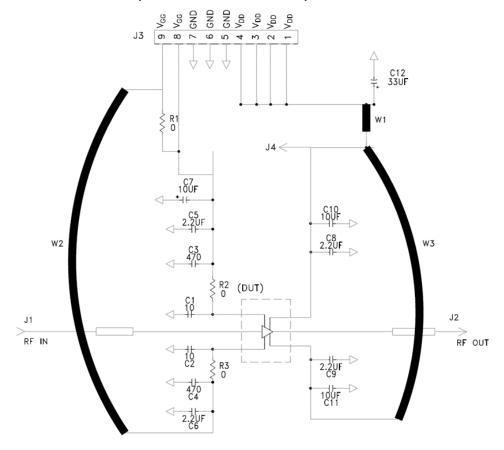
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.


IM3 (dBc)

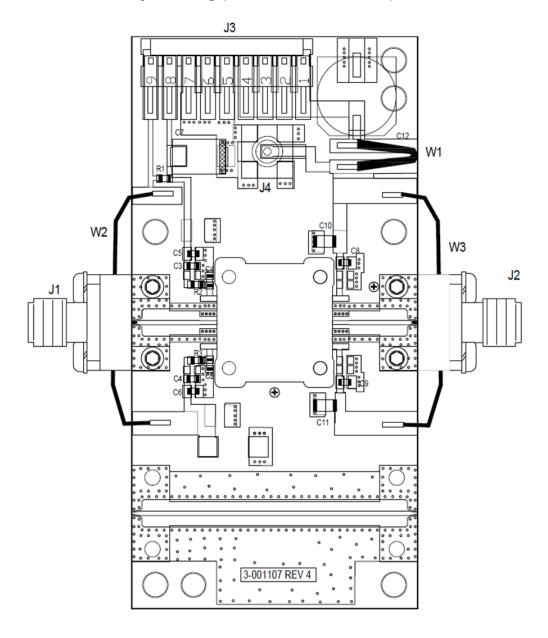
Thermal Characteristics

Parameter	Operating Conditions	Value
Operating Junction Temperature (T _J)	Freq = 2.5 GHz, V_D = 50 V, I_{DQ} = 500 mA, I_{DRIVE} = 1.8 A, P_{IN} = 32 dBm, P_{OUT} = 45.67 dBm, P_{DISS} = 55.5 W,	206.4°C
Thermal Resistance, Junction to Case (R _{0JC})	$T_{c} = 85^{\circ}C, CW$	2.187


Power Dissipation vs. Frequency (T_c = 85°C)

Frequency (GHz)

Evaluation Board Schematic (CMPA1E1F060F-AMP)

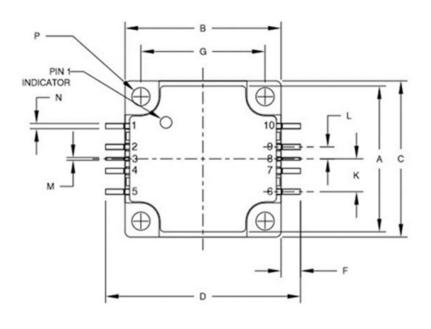


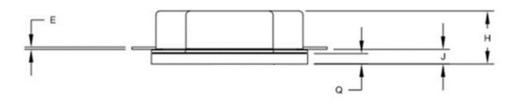
Parts List

Part	Value	Qty.
R1, R2, R3	RES 0 Ohm, 0603	3
C1,C2	CAP, 10PF, +/-5%, ATC600S	2
C3,C4	CAP, 470PF, 5%, 100V, 0603	2
C5,C6,C8,C9	CAP, 2.2UF	4
C7	CAP 10UF 16V TANTALUM, 2312	1
C10,C11	CAP, 10UF	2
C12	CAPACITOR, 33UF, 100V, Electrolytic	1
-	PCB, RO3003, .010 THK, HPHF Package	1
-	BASEPLATE 3.0x1.5x0.25 Cu	1
J1, J2	Connector SMA JACK (FEMALE) END LAUNCH CONNECTOR	2
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
J3	HEADER RT>PLZ .1CEN LK 9POS	1
W1	WIRE, BLACK, 30 AWG	1
W2, W3	WIRE, BLACK, 22 AWG	2
U1	CMPA1E1F060F	1

Evaluation Board Assembly Drawing (CMPA1E1F060F-AMP)

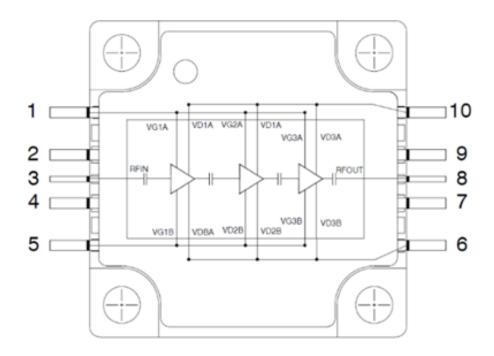
Bias On Sequence


- 1. Ensure RF is turned-off
- 2. Apply pinch-off voltage of -5 V to the gate (V_G)
- 3. Apply nominal drain voltage (V_D)
- 4. Adjust Vg to obtain desired quiescent drain current (I_{DQ})
- Apply RF


Bias Off Sequence

- 1. Turn RF off
- 2. Apply pinch-off to the gate $(V_G = -5 V)$
- 3. Turn off drain voltage (V_D)
- 4. Turn off gate voltage (V_G)

Mechanical Information



		INCHES			MILLIMETERS			
DIM	MIN	TYP	MAX	MIN	TYP	MAX		
Α	.555	.560	.565	14.10	14.22	14.35		
В	.595	.600	.605	15.11	15.24	15.37		
С	.595	.600	.605	15.11	15.24	15.37		
D	-	(.750)			(19.05)	-		
Ε	.006	.008	.010	0.15	0.20	0.25		
F	.065	.075	.085	1.66	1.91	2.16		
G	.473	.478	.483	12.01	12.14	12.27		
Н	.191	.203	.215	4.86	5.16	5.46		
J	.049	.056	.063	1.24	1.42	1.60		
K	.121	.126	.131	3.07	3.20	3.33		
L	.041	.046	.051	1.04	1.17	1.30		
М	.005	.010	.015	0.13	.25	0.38		
N	.015	.020	.025	0.38	.51	0.63		
Р	.065	.070	.075	1.65	1.78	1.90		
Q	.038	.040	.042	0.97	1.02	1.07		

Pin Description

Pin#	Name	Description
1	VG	Pins 1 and 5 must be electrically connected to the gate bias voltage.
2	GND	RF and DC ground
3	RF Input	RF Input. 50-ohm matched. Internally DC blocked.
4	GND	RF and DC ground
5	VG	Pins 1 and 5 must be electrically connected to the gate bias voltage.
6	VD	Pins 6 and 10 must be electrically connected to the drain bias voltage.
7	GND	RF and DC ground
8	RF Output	RF Output. 50-ohm matched. Internally DC blocked.
9	GND	RF and DC ground
10	VD	Pins 6 and 10 must be electrically connected to the drain bias voltage.
Paddle	GND	RF and DC ground

CMPA1E1F060F Rev. V1

Revision History

Rev	Date	Change Description
V1P	09/17/2024	Initial preliminary release.
V1	09/29/2025	Production release.

CMPA1E1F060F Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.