

CMPA0060025F1

25 W, 20 MHz - 6.0 GHz, GaN MMIC, Power Amplifier

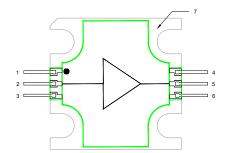
Description

The CMPA0060025F1 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC enables extremely wide bandwidths to be achieved in a small footprint screw-down package

PN: CMPA0060025F1 Package Type: 440219

Typical Performance Over 20 MHz - 6.0 GHz ($T_c = 25^{\circ}$ C)

Parameter	20 MHz	0.5 GHz	1.0 GHz	2.0 GHz	3.0 GHz	4.0 GHz	5.0 GHz	6.0 GHz	Units
Gain	21.4	20.1	19.3	16.7	16.6	16.8	15.7	15.5	dB
Output Power @ P _{IN} = 32 dBm	26.9	30.2	26.3	23.4	24.5	24.0	20.9	18.6	W
Power Gain @ P _{IN} = 32 dBm	12.3	12.8	12.2	11.7	11.9	11.8	11.3	10.7	dB
Efficiency @ P _{IN} = 32 dBm	63	55	40	31	33	31	28	26	%


Note: $V_{DD} = 50 \text{ V}$, $I_{DO} = 500 \text{ mA}$

Features

- 17 dB Small Signal Gain
- 25 W Typical P_{SAT}
- Operation up to 50 V
- High Breakdown Voltage
- **High Temperature Operation** 0.5" x 0.5" total product size

Applications

- **Ultra Broadband Amplifiers**
- **Test Instrumentation**
- **EMC Amplifier Drivers**

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units
Drain-Source Voltage	$V_{ extsf{DSS}}$	84	V
Gate-Source Voltage	V_{GS}	-10, +2	V _{DC}
Storage Temperature	T _{STG}	-65, +150	°C
Operating Junction Temperature	T _J	225	
Maximum Forward Gate Current	I _{GMAX}	6.3	mA
Soldering Temperature ¹	T _s	245	°C
Screw Torque	τ	40	in-oz
Thermal Resistance, Junction to Case	$R_{ heta JC}$	3.3	°C/W
Case Operating Temperature ²	T _C	-40, +150	°C

Notes:

Electrical Characteristics (Frequency = 20 MHz to 6.0 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics			Symbol	T	yp.	Max.	Un	its	Condition	ns	
DC Characteristics											
Gate Threshold Voltag	ge²		$V_{\text{GS(th)}}$	-3	3.0	_	V	/	V _{DS} = 20 V, Z	M _D = 20 mA	
Gate Quiescent Voltag	ge		$V_{GS(Q)}$	-2	2.7	_	V	ЭС	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 32 \text{ dB}$		
Saturated Drain Curre	ent		I _{DS}		12	-	А	١	V _{DS} = 12 V, V _{GS} = 2.0 V		
RF Characteristics	1										
Power Output at P _{OUT}	@ 4.5 GH	Нz		4:	2.8	-					
Power Output at P _{OUT}	@ 5.0 GH	Hz	P_{OUT}	4	3.3	_	dB	sm			
Power Output at P _{OUT}	@ 6.0 GI	-lz		4	2.9	_			V - E0.V I	- 500 m / D - 22 d D m	
Drain Efficiency at Pou	л @ 4.5 (GHz		2.	4.1	_			$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 32 \text{ dBm}$		
Drain Efficiency at Pou	л @ 5.0 (GHz	η	2	8.0	_	%	6			
Drain Efficiency at Pou	л @ 6.0 (GHz		2	7.2	_					
Output Mismatch Stre	ess		VSWR		_	5:1	Ч	ų	_	e at all phase angles, _{DQ} = 500 mA, P _{IN} = 32 dBm	
Small Signal RF Ch	aracte	ristics									
Frequency	Min.	Typ. S21 (dB)	Max.	Min.	Typ. S11 (dB) Max	K.	Min.	Typ. S22 (dB)	Conditions	
0.02 GHz - 0.25 GHz	10	19.3	23.7	_	-4.1	-2.5	5	_	-8.5		
0.25 GHz - 0.5 GHz	18	19.8		_	-6.8	-3.5	5	_	-8.9		
0.5 GHz - 1.0 GHz	15.5		22	_		-6.5	5	_	6.7	V = 50 V I = 500 ···· A	
1.0 GHz - 2.0 GHz	15.5	18.6		_	-15.3	10	_	_	-6.7	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$	
2.0 GHz - 3.0 GHz	10]	20	_	1	-12.	5	_	-6.0		
3.0 GHz - 6.0 GHz	13	16.3	20	_	-14.2	-6.5	5	_	-12.0		

Notes:

¹ Refer to the Application Note on soldering

 $^{^{2}}$ Measured for the CMPA0060025F1 at P_{IN} = 32 dBm

 $^{^{1}}$ P_{OUT} is defined as P_{IN} = 32 dBm

² The device will draw approximately 55-70 mA at pinch off due to the internal circuit structure

Typical Performance

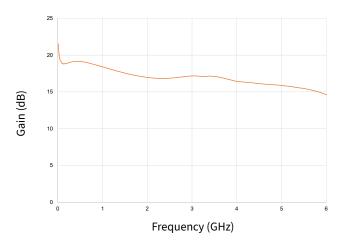


Figure 1. Small Signal Gain vs Frequency $V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$

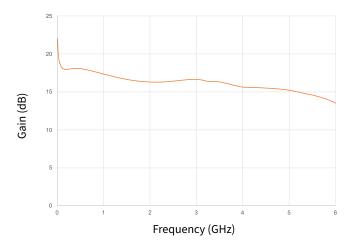


Figure 3. Small Signal Gain vs Frequency $V_{DD} = 40 \text{ V}, I_{DQ} = 500 \text{ mA}$

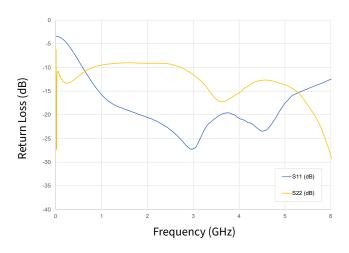


Figure 2. Input & Output Return Losses vs Frequency $V_{DD} = 50 \text{ V}, I_{DO} = 500 \text{ mA}$

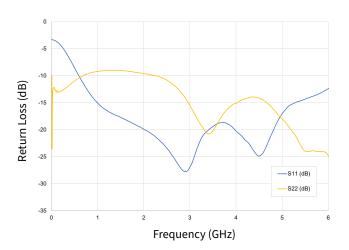
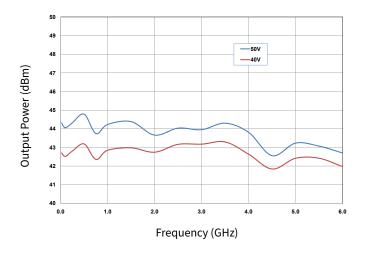
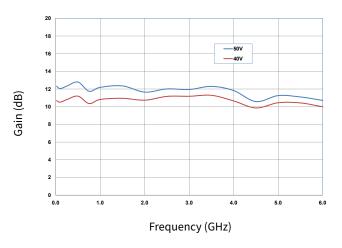



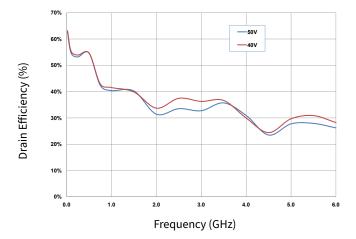
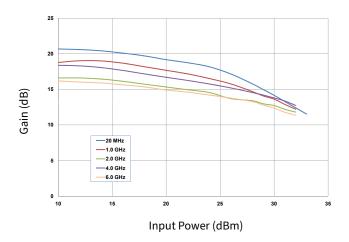
Figure 4. Small Signal Gain vs Frequency $V_{DD} = 40 \text{ V}, I_{DQ} = 500 \text{ mA}$

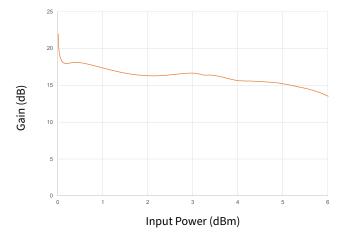

https://www.macom.com/support

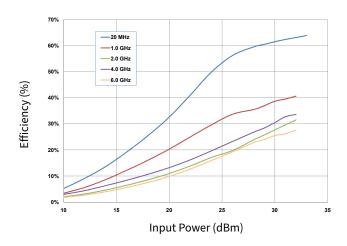
Typical Performance

Figure 5. Output Power at P_{IN} = 32 dBm vs Frequency as a Function of Drain Voltage, I_{DQ} = 500 mA

Figure 6. Power Gain at P_{IN} = 32 dBm vs Frequency as a Function of Drain Voltage, I_{DQ} = 500 mA


Figure 7. Drain Efficiency at P_{IN} = 32 dBm vs Frequency as a Function of Drain Voltage, I_{DQ} = 500 mA


Typical Performance

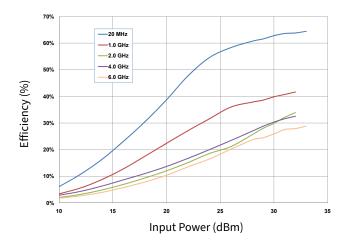

Figure 8. Gain vs Input Power at 50 V as a Function of Frequency, I_{DQ} = 500 mA

Figure 10. Gain vs Input Power at 40 V as a Function of Frequency, I_{DQ} = 500 mA

Figure 9. Efficiency vs Input Power at 50 V as a Function of Frequency, $I_{DQ} = 500 \text{ mA}$

Figure 11. Efficiency vs Input Power at 40 V as a Function of Frequency, $I_{DQ} = 500 \text{ mA}$

General Device Information

The CMPA0060025F1 is a GaN HEMT MMIC Power Amplifier, which operates between 20 MHz - 6.0 GHz. The amplifier typically provides 17 dB of small signal gain and 25 W saturated output power with an associated power added efficiency of better than 20%. The wideband amplifier's input and output are internally matched to 50 Ohm. The amplifier requires bias from appropriate Bias-T's, through the RF input and output ports.

The CMPA0060025F1-AMP1 and the device were then measured using external Bias-T's, (TECDIA: AMP1T-H06M20 or similar), as shown in Figure 2. The Bias-T's were included in the calibration of the test system. All other losses associated with the test fixture are included in the measurements.

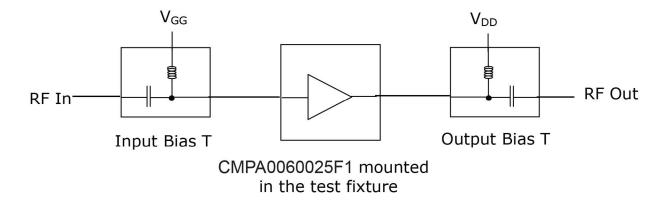
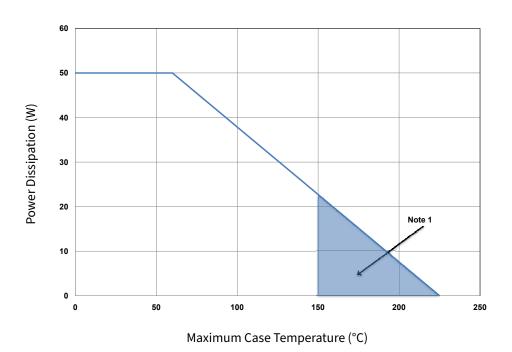
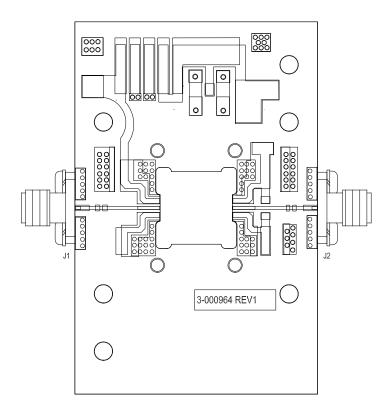



Figure 2. Typical test system setup required for measuring CMPA0060025F1-AMP1

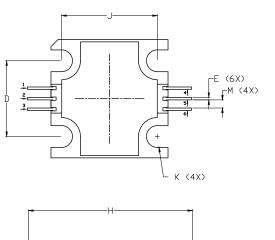
CMPA0060025F1 Power Dissipation De-rating Curve

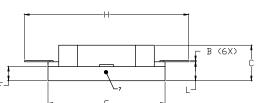

Note: Area exceeds Maximum Case Temperature (See Page 2)

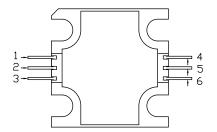
Electrostatic Discharge (ESD) Classifications

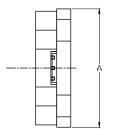
Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	2	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	C3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

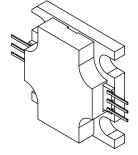
CMPA0060025F1-AMP Demonstration Amplifier Circuit Outline




CMPA0060025F1-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
J1,J2	CONNECTOR, SMA, AMP11052901-1	2
-	PCB, TACONIC, RF-35-0100-CH/CH	1
Q1	CMPA0060025F1	1


Note: An external Bias-T is required


Product Dimensions CMPA0060025F1 (Package Type — 440219)

NOT TO SCALE

PIN	Function	
1	NC	
2	Gate	
3	NC	
4	NC	
5	Drain	
6	NC	
7	Source	

NUTES:

- 1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.495	95 0.505 12.57		12.82	
В	0.003	0.005	0.076	0.127	
С	0.140	0.160	3.56	4.06	
D	0.315	0.325	8.00	8.25	
E	0.008	0.012	0.204	0.304	
F	0.055	0.065	1.40	1.65	
G	0.495	0.505	12.57	12.82	
Н	0.695	0.705	17.65	17.91	
J	0.403	0.413	10.24	10.49	
К	ø.	092	2.34		
L	0.075	0.085	1.905	2.159	
М	0.032	0.040	0.82	1.02	

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA0060025F1	GaN HEMT	Each	C.Moderates
CMPA0060025F1-AMP	Test board with GaN MMIC installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.