

CMPA0060025F

25 W, 20 MHz - 6000 MHz, GaN MMIC Power Amplifier

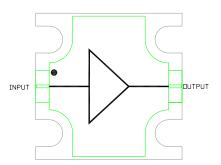
Description

The CMPA0060025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC enables extremely wide bandwidths to be achieved in a small footprint screw-down package.

PN: CMPA0060025F Package Type: 780019

Typical Performance Over 20 MHz - 6.0 GHz ($T_c = 25^{\circ}$ C)

Parameter	20 MHz	0.5 GHz	1.0 GHz	2.0 GHz	3.0 GHz	4.0 GHz	5.0 GHz	6.0 GHz	Units
Gain	21.4	20.1	19.3	16.7	16.6	16.8	15.7	15.5	dB
Output Power @ P _{IN} = 32 dBm	26.9	30.2	26.3	23.4	24.5	24.0	20.9	18.6	W
Power Gain @ P _{IN} = 32 dBm	12.3	12.8	12.2	11.7	11.9	11.8	11.3	10.7	dB
Efficiency @ P _{IN} = 32 dBm	63	55	40	31	33	31	28	26	%


Note: $V_{DD} = 50 \text{ V}$, $I_{DO} = 500 \text{ mA}$

Features

- 17 dB Small Signal Gain
- 25 W Typical P_{SAT}
- Operation up to 50 V
- High Breakdown Voltage
- **High Temperature Operation**
- 0.5" x 0.5" total product size

Applications

- **Ultra Broadband Amplifiers**
- **Test Instrumentation**
- **EMC Amplifier Drivers**

RoHS

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	
Drain-Source Voltage	V _{DSS}	84	V	
Gate-Source Voltage	V_{GS}	-10, +2	V_{DC}	
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _J	225		
Maximum Forward Gate Current	I _{GMAX}	4	mA	
Soldering Temperature ¹	T _S	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	$R_{ heta$ JC	3.3	°C/W	
Case Operating Temperature ^{2,3}	T _C	-40, +150	°C	

Notes:

Electrical Characteristics (Frequency = 20 MHz to 6.0 GHz unless otherwise stated; $T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics						
Gate Threshold Voltage ²	$V_{GS(th)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 20 \text{ V}, \Delta I_{D} = 20 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V_{DC}	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 32 \text{ dBm}$
Saturated Drain Current	I _{DS}	_	12	_	A	$V_{DS} = 12 \text{ V}, V_{GS} = 2.0 \text{ V}$
RF Characteristics ¹						
Power Output at P _{OUT} @ 4.5 GHz			42.8	_		
Power Output at P _{OUT} @ 5.0 GHz	Роит	41.0	43.3	_	dBm	
Power Output at P _{OUT} @ 6.0 GHz			42.9	_		V = 50 V I = 500 m A D = 22 d D m
Drain Efficiency at P _{OUT} @ 4.5 GHz			24.1	_		$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 32 \text{ dBm}$
Drain Efficiency at P _{OUT} @ 5.0 GHz	η	18.0	28.0		%	
Drain Efficiency at P _{OUT} @ 6.0 GHz			27.2	_		
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 500 \text{ mA}$, $P_{IN} = 32 \text{ dBm}$

Fraguency	S21 (dB)		S11 (dB)		S22 (dB)		Conditions		
Frequency	Min.	Тур.	Max.	Тур.	Max.	Тур.	Max	Conditions	
0.02 GHz - 0.25 GHz	10.0	19.3	23.7	3.7 -4.1 -		-8.5			
0.25 GHz - 0.5 GHz	18.0	19.8		-6.8	-3.5	-8.9	4.5		
0.5 GHz - 1.0 GHz	15.5	18.6	.6 22.0 -6.5 -6.7		-6.5	6.7	-4.5	V = 50 V I = 500 mA	
1.0 GHz - 2.0 GHz					$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$				
2.0 GHz - 3.0 GHz	12.0		20.0		-12.5	-6.0	2.5		
3.0 GHz - 6.0 GHz	13.0	16.3	20.0	-14.2	-6.5	-5.3	-2.5		

Notes:

¹ Refer to the Application Note on soldering

 $^{^{2}}$ Measured for the CMPA0060025F at P_{IN} = 32 dBm

 $^{^{1}}$ P_{OUT} is defined as P_{IN} = 32 dBm

² The device will draw approximately 55-70 mA at pinch off due to the internal circuit structure.

Typical Performance

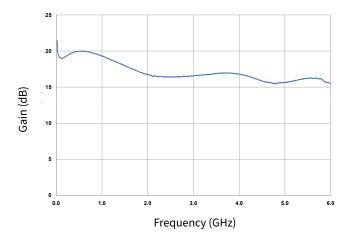


Figure 1. Small Signal Gain vs Frequency at 50 V

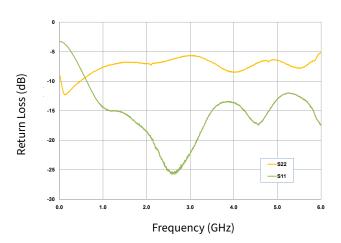


Figure 2. Input & Output Return Losses vs Frequency at 50 V

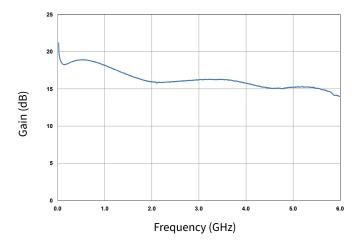


Figure 3. Small Signal Gain vs Frequency at 40 V

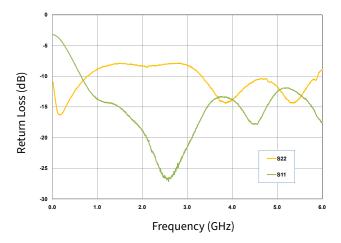


Figure 4. Small Signal Gain vs Frequency at 40 V

https://www.macom.com/support

Typical Performance

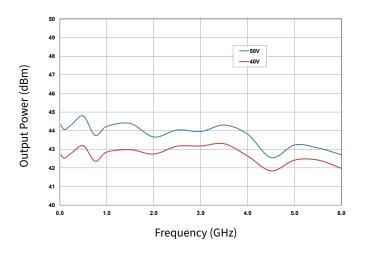
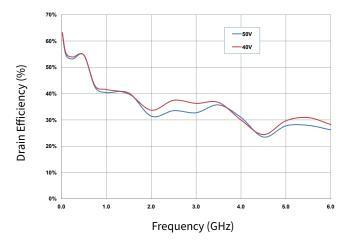
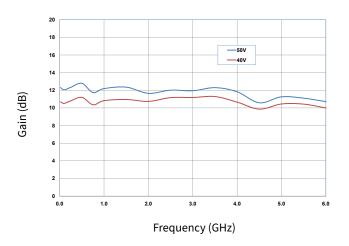
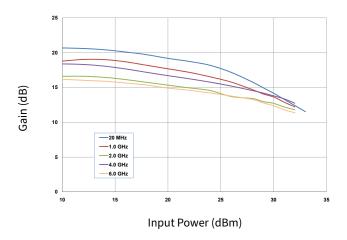
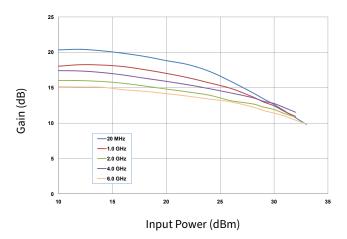
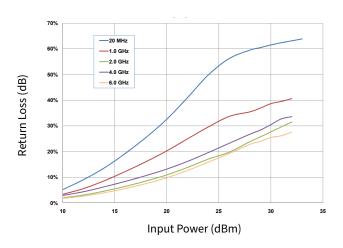


Figure 5. Output Power at $P_{IN} = 32 \text{ dBm}$ vs Frequency as a Function of Drain Voltage


Figure 7. Drain Efficiency at P_{IN} = 32 dBm vs Frequency as a Function of Drain Voltage


Figure 6. Power Gain at $P_{IN} = 32 \text{ dBm}$ vs Frequency as a Function of Drain Voltage


Typical Performance

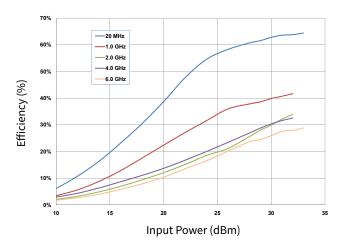

Figure 8. Gain vs Input Power at 50 V as a Function of Frequency

Figure 10. Gain vs Input Power at 40 V as a Function of Frequency

Figure 9. Efficiency vs Input Power at 50 V as a Function of Frequency

Figure 11. Efficiency vs Input Power at 40 V as a Function of Frequency

General Device Information

The CMPA0060025F is a GaN HEMT MMIC Power Amplifier, which operates between 20 MHz - 6.0 GHz. The amplifier typically provides 17 dB of small signal gain and 25 W saturated output power with an associated power added efficiency of better than 20%. The wideband amplifier's input and output are internally matched to 50 Ohm. The amplifier requires bias from appropriate Bias-T's, through the RF input and output ports.

The CMPA0060025F is provided in a flange package format. The input and output connections are gold plated to enable gold bond wire attach at the next level assembly.

The measurements in this data sheet were taken on devices wire-bonded to the test fixture with 2 mil gold bond wires. The CMPA0060025F-AMP1 and the device were then measured using external Bias-T's, (TECDIA: AMP1T-H06M20 or similar), as shown in Figure 2. The Bias-T's were included in the calibration of the test system. All other losses associated with the test fixture are included in the measurements.

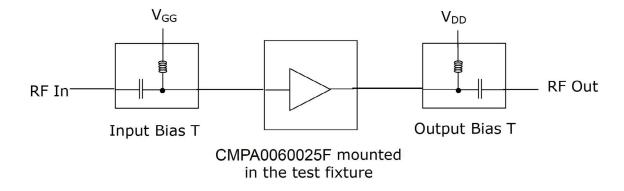
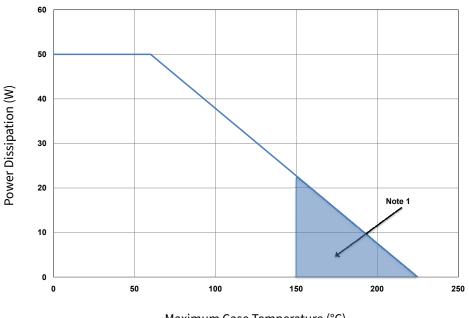
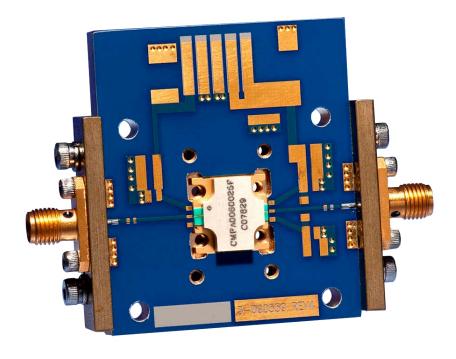



Figure 2. Typical test system setup required for measuring CMPA0060025F1-AMP1

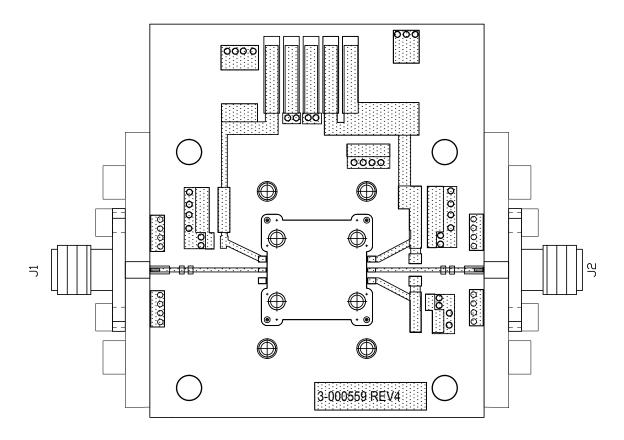
CMPA0060025F Power Dissipation De-rating Curve

Maximum Case Temperature (°C)

Note:

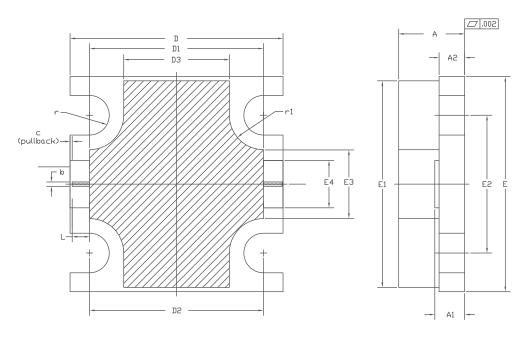

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	нвм	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C


 $^{^{\}rm 1}\,{\rm Area}$ exceeds Maximum Case Operating Temperature (See Page 2).

CMPA0060025F-AMP Demonstration Amplifier Circuit

CMPA0060025F-AMP Demonstration Amplifier Circuit Outline



CMPA0060025F-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
J1,J2	CONNECTOR, SMA, AMP11052901-1	2
-	PCB, TACONIC, RF-35-0100-CH/CH	1
Q1	CMPA0060025F	1

Notes

Product Dimensions CMPA0060025F (Package Type — 780019)

NOTES:

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.

4, LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

5. ALL PLATED SURFACES ARE NI/AU

	INCHES		MILLIM	IETERS	NOTE
DIM	MIN	MAX	MIN	MAX	NOTE
Α	0.148	0.162	3.76	4.12	_
A1	0.066	0.076	1.67	1.93	_
A2	0.056	0.064	1.42	1.63	_
b	0.0	09	0.	24	x2
С	0.0	05	0.	13	x2
D	0.495	0.505	12.57	12.83	_
D1	0.403	0.413	10.23	10.49	_
D2	0.4	0.408		10.36	
D3	0.243	0.253	6.17	6.43	_
E	0.495	0.505	12.57	12.83	_
E1	0.475	0.485	12.06	12.32	_
E2	0.3	20	8.13		_
E3	0.155	0.165	3.93	4.19	_
E4	0.105	0.115	2.66	2.92	_
L	0.041		1.04		x2
r	R0.0)46	R1.17		x4
r1	R0.080		R2.03		x4

¹ The CMPA0060025F is connected to the PCB with 2.0 mil Au bond wires.

² An external Bias-T is required.

Part Number System

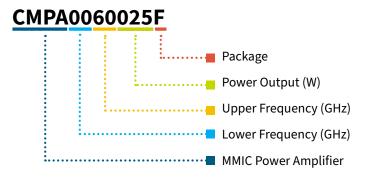


Table 1.

Parameter	Value	Units
Lower Frequency	20	MHz
Upper Frequency	6000	МП2
Power Output	25	W
Package	Flange	-

Note

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA0060025F	GaN MMIC	Each	CHAS GOLDGO SEE
CMPA0060025F-AMP	Test board with GaN MMIC installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.