

CMPA0060025D

25 W, 20 MHz - 6.0 GHz, GaN MMIC, Power Amplifier

Description

The CMPA0060025D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC enables very wide bandwidths.

PN: CMPA0060025D

Typical Performance Over 1.0-6.0 GHz (T_c = 25°C)

Parameter	1.0 GHz	2.0 GHz	3.0 GHz	4.0 GHz	5.0 GHz	6.0 GHz	Units
Gain	18.0	18.0	18.5	18.0	17.0	17.0	dB
Output Power @ P _{IN} 32 dBm	34	38	42	29	30	31	W
Associated Gain @ P _{IN} 32 dBm	13.3	13.9	14.2	12.6	13.1	12.9	dB
PAE @ P _{IN} 32 dBm	54	45	46	33	34	33	%

Note: $V_{DD} = 50 \text{ V}$, $I_{D} = 500 \text{ mA}$

Features

- 18 dB Small Signal Gain
- 30 W Typical P_{SAT}
- Operation up to 50 V
- High Breakdown Voltage
- High Temperature Operation
- Size 0.157 x 0.094 x 0.004 inches

Applications

- Ultra Broadband Amplifiers
- Test Instrumentation
- EMC Amplifier Drivers

1

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units	Conditions
Drain-source Voltage	V _{DSS}	84		
Gate-source Voltage	V _{GS}	-10, +2	- V _{DC}	
Storage Temperature	T _{stg}	-65, +150	0.5	
Operating Junction Temperature	TJ	225	- °C	
Maximum Forward Gate Current	I _{GMAX}	12	mA	
Thermal Resistance, Junction to Case (packaged) ¹	5	2.32	96 (14)	0596
Thermal Resistance (die only) ¹	R _{θJC}	1.40	- °C/W	85°C
Input Power ²	P _{IN}	36	dBm	

Notes:

¹ Eutectic die attach using 80/20 AuSn solder mounted to a 10 mil thick CuMo carrier

² Limit for internal resistor only. Thermal dissipation may be exceeded at this level

Electrical Characteristics (Frequency = 20 MHz to 6.0 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

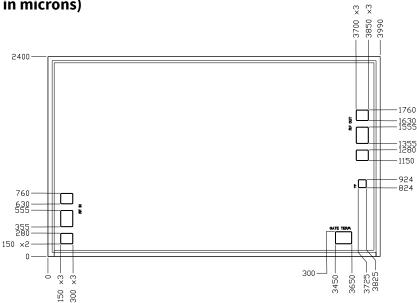
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics	•			<u>۴</u>	•	
Gate Threshold Voltage ¹	V _{GS(th)}	-3.8	-3.0	-2.3	V	$V_{DS} = 20 V, \Delta I_{D} = 6 mA$
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	-	V _{DC}	$V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 500 \text{ mA}$
Saturated Drain Current ²	I _{DS}	_	12	_	A	$V_{DS} = 12.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
RF Characteristics ^{3,4}						
Small Signal Gain	S21	_	18	-		
Input Return Loss	S11	—	9	_	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$
Output Return Loss	S22	—	7	_		
Power Output at 4.0 GHz		17	29	_		
Power Output at 5.0 GHz	Pout	23	30	_	w	
Power Output at 6.0 GHz		23	31	_		
Power Added Efficiency at 4.0 GHz		18	33	_		$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 32 \text{ dBm}$
Power Added Efficiency at 5.0 GHz	PAE	23	34	_	%	
Power Added Efficiency at 6.0 GHz		22	33	_		
Power Gain	G₽	_	13	_	dB	
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 500 \text{ mA}$, $P_{IN} = 32 \text{ dBm}$

Notes:

2

¹ The device will draw approximately 55-70 mA at pinch off due to the internal circuit structure

² Scaled from PCM data


 $^{\scriptscriptstyle 3}$ All data pulsed with Pulse Width at 10µs, 1% Duty Cycle

 $^{\scriptscriptstyle 4}$ Data measured into a 15 dB output load with a maximum return loss

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

DIE Dimensions (units in microns)

Overall die size 3990 x 2400 (+0/-50) microns, die thickness 100 (+/-10) micron. All Gate and Drain pads must be wire bonded for electrical connection.

Pad Number	Function	Description	Pad Size (in)
1	RF IN ¹	RF-Input pad. Matched to 50 ohm. Requires gate control from an external bias –T from -2.3 V to -3.8 V.	150 x 200
2	Gate Termination	Off Chip termination for the Gate. It needs to be DC-blocked	200 x 150
3	Test Pad	Pad specific for probe	100 x 100
4	RF OUT ¹	RF-Output pad. Matched to 50 ohm. Requires Drain supply from an external bias –T up to 50 V , 2.0 A	150 x 200

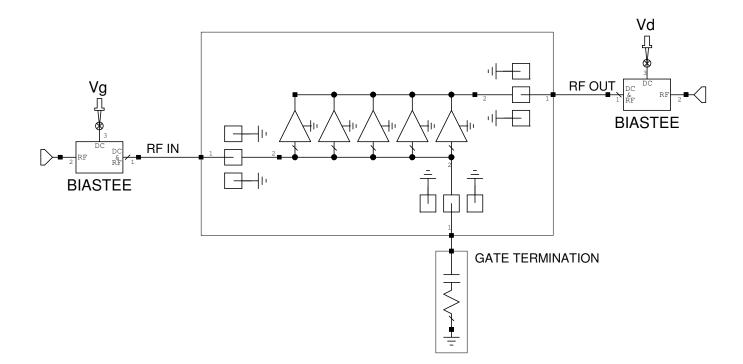
Note:

¹ The RF In and Out pads have a ground-signal-ground configuration with a pitch of 75 microns.

Die Assembly Notes

- Recommended solder is AuSn (80/20) solder. Refer to the website for the Eutectic Die Bond Procedure application note .
- Vacuum collet is the preferred method of pick-up
- The backside of the die is the Source (ground) contact .
- Die back side gold plating is 5 microns thick minimum
- Thermosonic ball or wedge bonding are the preferred connection methods
- Gold wire must be used for connections
- Test pad must be bonded to Ground

https://www.macom.com/support


Use the die label (XX-YY) for correct orientation

4

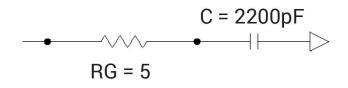
Functional Block Diagram

This device employs a wideband amplifier topology. It has an internal termination for the Gate, which works well over 1.0-6.0 GHz. For operation below 1.0 GHz an external termination is required. This termination needs to be DC-blocked and suitable to withstand up to 2 W of RF power. (Refer to the reference design section for the LF-termination in this data sheet for more details). The circuits also require external wideband Bias –T's to supply voltage to the Gate and Drain. The Bias-T at the Drain needs to be designed to handle 50 V and up to 2.0 A.

External Termination Reference Design

The following is a plot of the gain of the die with and without an RC reference circuit.

Notes:


5

 $^{\rm 1}$ An off chip termination is needed to reduce the high gain peak at low frequencies

² The off chip termination should be designed to minimize the impact on the MMIC's performance at higher frequencies

RC Reference Circuit

The reference circuit is a series capacitor and resistor as shown below. The resistor needs to handle 2.0 W.

Typical Performance

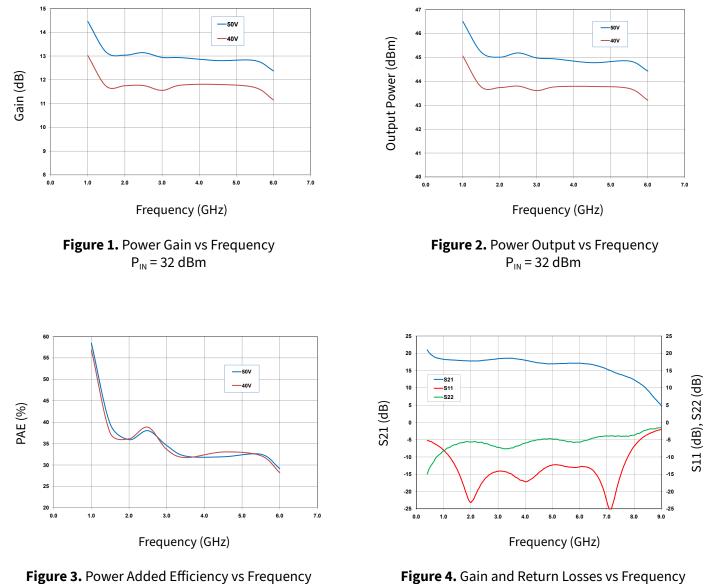


Figure 4. Gain and Return Losses vs Frequency $V_{DD} = 50 \text{ V}, I_{DO} = 500 \text{ mA}$

Electrostatic Discharge (ESD) Classifications

 $P_{IN} = 32 \text{ dBm}$

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D

6 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. Rev. 2.3, 2022-12-13 For further information and support please visit:

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA0060025D	GaN MMIC Power Amplifier Bare Die	Each	

7 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY. EXPRESS OR IMPLIED. RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

8

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 2.3, 2022-12-13 For further information and support please visit: