

CMPA0060002F1 2 W, DC - 6.0 GHz, GaN MMIC Power Amplifier

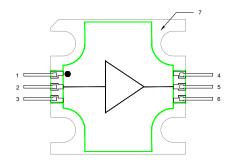
Description

The CMPA0060002F1 is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity and higher thermal conductivity. GaN HEMTs also offer greater power density and wider bandwidths compared to Si and GaAs transistors. This MMIC employs a distributed (traveling-wave) amplifier design approach, enabling extremely wide bandwidths to be achieved in a small footprint screw-down package featuring a copper-tungsten heat sink.

PN: CMPA0060002F1 Package Type: 440219

Typical Performance Over 20 MHz - 6.0 GHz ($T_c = 25^{\circ}C$)

Parameter	20 MHz	0.5 GHz	1.0 GHz	2.0 GHz	3.0 GHz	4.0 GHz	5.0 GHz	6.0 GHz	Units
Small Signal Gain	21.4	19.3	18.2	16.7	17.1	18.0	19.2	16.8	dB
Saturated Output Power, P _{SAT} ¹	5.9	5.5	5.7	4.8	4.5	4.6	4.6	3.3	W
Power Gain @ P _{SAT} ¹	12.5	11.1	10.6	8.8	10.1	9.1	8.2	7.8	dB
PAE @ P _{SAT} ¹	39	31	32	26	24	26	24	18	%


Note¹ P_{SAT} is defined as the RF output power where the device starts to draw positive gate current in the range of 2-4 mA Note² V_{DD} = 28 V, I_{DQ} = 100 mA

Features

- 18 dB Small Signal Gain
- 4.8 W Typical P_{SAT}
- Operation up to 28 V
- High Breakdown Voltage
- High Temperature Operation
- 0.5" x 0.5" Total Product Size

Applications

- Ultra Broadband Amplifiers
- Fiber Drivers
- Test Instrumentation
- EMC Amplifier Drivers

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Absolute Maximum Ratings (not simultaneous) at 25°C

Parameter	Symbol	Rating	Units
Drain-Source Voltage	V _{DSS}	84	
Gate-Source Voltage	V _{GS}	-10, +2	- V _{DC}
Storage Temperature	T _{STG}	-65, +150	°C
Operating Junction Temperature	TJ	225	
Maximum Forward Gate Current	I _{GMAX}	4	mA
Soldering Temperature ¹	Ts	245	°C
Screw Torque	τ	40	in-oz
Thermal Resistance, Junction to Case	R _{θJC}	4.3	°C/W
Case Operating Temperature ²	Tc	-40, +150	°C

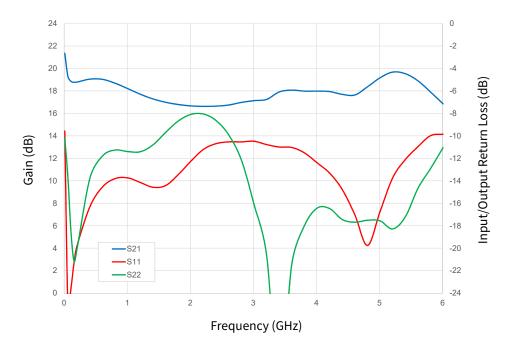
Notes:

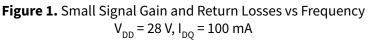
¹ Refer to the Application Note on soldering ² Measured for the CMPA0060002F1 at P_{DISS} = 2 W

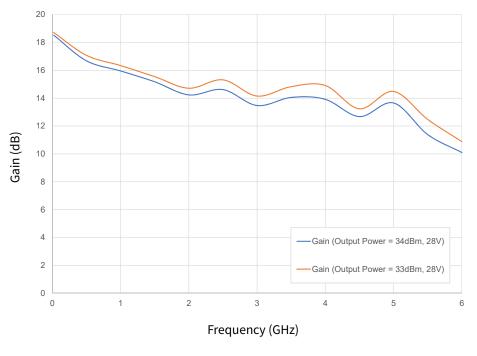
Electrical Characteristics (T_c = 25°C)

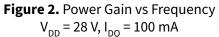
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics				•	•	
Gate Threshold Voltage1	V _{GS(th)}	-3.8	-3.0	_	V	$V_{DS} = 20 \text{ V}, \Delta I_D = 2 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	—	-2.7	—	V _{DC}	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$
Saturated Drain Current	I _{DC}	16.2	1.4	—	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
RF Characteristics						
Small Signal Gain at 20 MHz - 6.0 GHz	S21	_	15.1	—		
Input Return Loss at 2.5 - 6.0 GHz	S11	—	-8.3	—	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$
Output Return Loss at 2.5 - 6.0 GHz	S22	—	-10.4	_		
Power Output at 3.5 GHz	P _{OUT1}	—	3.7	—		
Power Output at 4.0 GHz	P _{OUT2}	—	3.5	—	w	
Power Output at 6.0 GHz	P _{OUT3}	—	2.2	—		
Power Added Efficiency at 3.5 GHz	PAE ₁	—	25	—		_
Power Added Efficiency at 4.0 GHz	PAE ₂	—	27	—	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}, P_{IN} = 23 \text{ dBm}$
Power Added Efficiency at 6.0 GHz	PAE ₃	—	19	—		
Power Gain at 3.5 GHz	G _{P1}	_	12.6	_		
Power Gain at 4.0 GHz	G _{P2}	_	12.4	_	dB	
Power Gain at 6.0 GHz	G _{P3}	_	10.5	_		
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, V _{DD} = 48 V, I _{DQ} = 100 mA, P _{IN} = 23 dBm Pulsed

Notes:

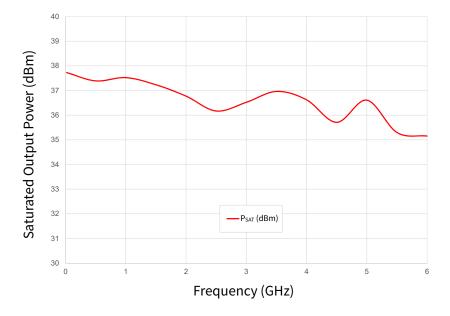

2


¹ The device will draw approximately 20-25 mA at pinch off due to the internal circuit structure

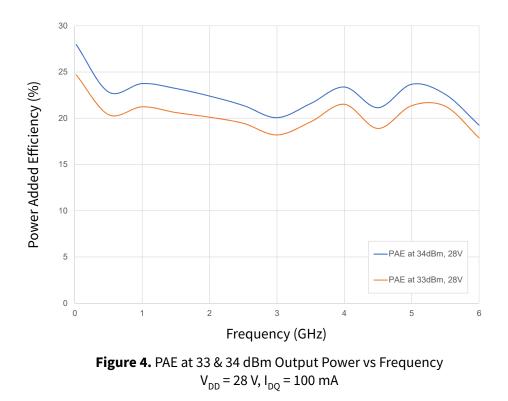

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



Typical Performance



3 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.


Typical Performance

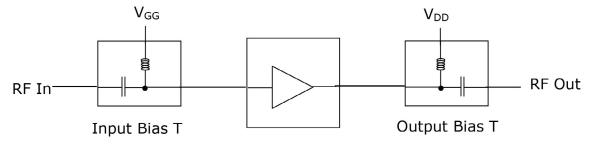
Frequency (GHz)	P _{SAT} at 28V (dBm)	P _{SAT} at 28V (W)
0.02	37.7	5.9
0.5	37.4	5.5
1.0	37.5	5.7
1.5	37.2	5.3
2.0	36.8	4.8
2.5	36.5	4.1
3.0	36.2	4.5
3.5	37	5
4.0	36.6	4.6
4.5	35.7	3.7
5.0	36.6	4.6
5.5	35.3	3.4
6.0	35.2	3.3

Figure 3. Saturated Output Power Performance (P_{SAT}) vs Frequency V_{DD} = 28 V, I_{DO} = 100 mA

Note: P_{sat} is defined as the RF output power where the device starts to draw positive gate current in the range of 2-4 mA

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

4



General Device Information

The CMPA0060002F1 is a GaN HEMT MMIC Distributed Driver Amplifier, which operates between 20 MHz - 6.0 GHz. The amplifier typically provides 18 dB of small signal gain and 4.8 W saturated output power with an associated power added efficiency of better than 20%. The wideband amplifier's input and output are internally matched to 50 Ohm. The amplifier requires bias from appropriate Bias-T's, through the RF input and output ports.

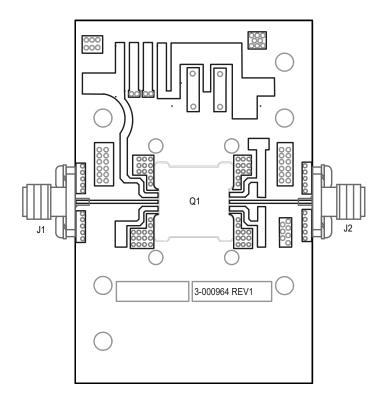
The CMPA0060002F1 is provided in a flange package format. The input and output connections are gold plated to enable gold bond wire attach at the next level assembly.

The measurements in this data sheet were taken on devices wire-bonded to the test fixture with 2 mil gold bond wires. The CMPA0060002F1-AMP and the device were then measured using external Bias-T's, (Aeroflex: 8800, SMF3-12; TECDIA: AMPT-06M20 or similar), as shown in Figure 5. The Bias-T's were included in the calibration of the test system. All other losses associated with the test fixture are included in the measurements.

CMPA0060002F1 mounted in the test fixture

Figure 5. Typical test system setup required for measuring CMPA0060002F1-AMP

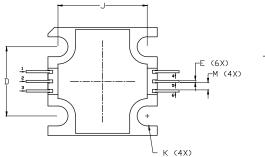
Electrostatic Discharge (ESD) Classifications

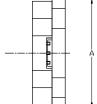

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	2	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

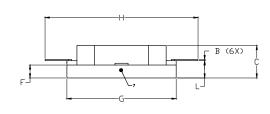
⁵ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit. Rev. 1.0, 2022-8-26 https://www.macom.com/support

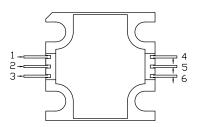
6

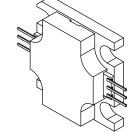
CMPA0060002F1-AMP Demonstration Amplifier Circuit Outline

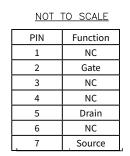

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 1.0, 2022-8-26




CMPA0060002F1-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
J1, J2	CONNECTOR, SMA, AMP1052901-1	2
-	PCB, TACONIC, RF-35-0100-CH/CH	1
Q1	CMPA0060002F1	1


Product Dimensions CMPA0060002F1 (Package Type – 440219)

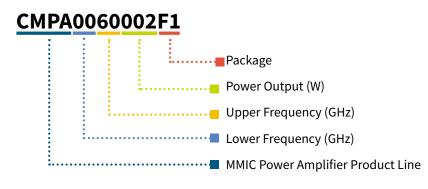


NOTES: 1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

 LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
ALL PLATED SURFACES ARE NI/AU


	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
A	0.495	0.505	12.57	12.82
В	0.003	0.005	0.076	0.127
С	0.140	0.160	3.56	4.06
D	0.315	0.325	8.00	8.25
E	0.008	0.012	0.204	0.304
F	0.055	0.065	1.40	1.65
G	0.495	0.505	12.57	12.82
н	0.695	0.705	17.65	17.91
J	0.403	0.413	10.24	10.49
к	ø.	092	2.3	34
L	0.075	0.085	1.905	2.159
м	0.032	0.040	0.82	1.02

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

7

Part Number System

Table 1.

Table 2

Parameter	Value	Units
Lower Frequency	20	MHz
Upper Frequency ¹	6.0	GHz
Power Output	2	W
Package	Flange	—

8

https://www.macom.com/support

Note: ¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

9

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA0060002F1	GaN MMIC	Each	CHIPPEOPSIONS CHIPPEOPSIONS
CMPA0060002F1-AMP	Test board with GaN MMIC installed	Each	

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY. EXPRESS OR IMPLIED. RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

10

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 1.0, 2022-8-26 For further information and support please visit: