4-Bit, Ku-Band Core Chip 10.70 - 12.75 GHz

CGY2179HV/C1 Rev. V1

Features

Gain: 12 dB @ 11.7 GHz

Noise Figure: 1.9 dB @ 11.7 GHz
RMS Phase Error: 7° @ 11.7 GHz

RMS Amplitude Error: 0.6 dB @ 11.7 GHz

• Output P1dB: 3 dBm

Input Return Loss: -15 dB @ 11.7 GHz
Output Return Loss: -12 dB @ 11.7 GHz
Total Power Consumption: 200 mW

QFN Size: 4 x 5 mm

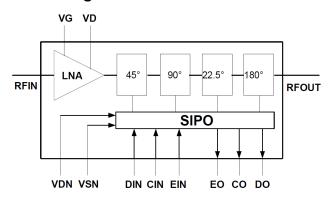
Tested 100%

Samples & Demo Boards Available

RoHS* Compliant

Applications

- Radar, Antennas
- Telecommunication
- Instrumentation


Description

The CGY2179HV/C1 is a high performance QFN packaged T/R 4-bit Core Chip operating in Ku-band. It includes a 4-bit phase shifter and an LNA. It has a phase shifting range of 360°, and a LSB of 22.5°. It covers the frequency range from 10.70 to 12.75 GHz.

The on-chip control logic with serial input register minimizes the number of bonding pads and greatly simplifies the interfacing to this device.

This die is manufactured using 0.18 µm gate length pHEMT Technology. The MMIC uses gold bond pads and backside metallization and is fully protected with Silicon Nitride passivation to obtain the highest level of reliability. This technology has been evaluated for Space applications and is on the European Preferred Parts List of the European Space Agency

Block Diagram

Ordering Information

Part Number	Package
CGY2179HV/C1	QFN
CGY2179UH/C1	Bare Die

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

CGY2179HV/C1

Electrical Specifications^{1,2}: Freq. = 11.7 GHz, V_D = +2 V, V_G = -0.3 V, T_A = +25°C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Supply Voltage	Positive Negative Drain	V	+4.5 -5.5 +1.8	+5.0 -5.0 +2.0	+5.5 -5.5 +2.2
Current	Positive Negative Drain (V _G = -0.3 V)	mA	_	12 5 55	_
Gain	_	dB	10	12	
Noise Figure	@ Reference State	dB	_	1.9	_
Input Return Loss	All States	dB	_	-15	_
Output Return Loss	All States	dB	_	-12	
Phase Range	_	۰	_	360	_
RMS Phase Error	with regards to the 16 phase states	٥	_	7	_
RMS Gain Variation	with regards to the 16 phase states	dB	_	0.6	_
P1dB	_	dB	_	3	_
Serial Data Rate	_	Mbps		10	_

^{1.} The RMS value is the root mean square of the error defined as below:

$$x_{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} = \sqrt{x_i^2 + \sigma_{x_i}^2}$$

^{2.} Where x_i is the difference between the measured value and the theoretical value, x_i is the mean value of the N x_i, and σxi is the standard deviation of x_i.

Absolute Maximum Ratings^{3,4}

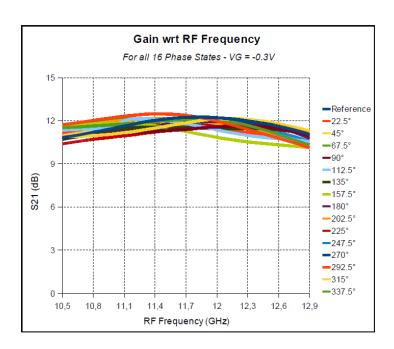
Parameter	Absolute Maximum
Supply Voltage	
Positive	-1 V to +6 V
Negative	-6 V to +1 V
Digital	-1 V to +6 V
Drain	-1 V to +3 V
Gate	-0.4 V to 0 V
Input Power	0 dBm
Junction Temperature	+150°C
Storage Temperature	-55°C to +150°C

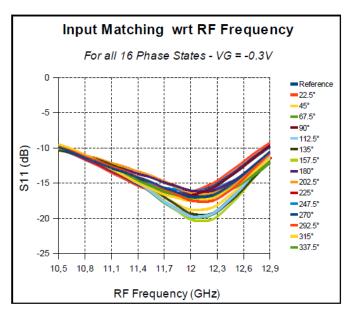
^{3.} Exceeding any one or combination of these limits may cause permanent damage to this device.

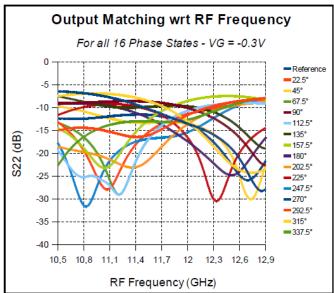
Operating Conditions

Parameter	Absolute Maximum
Supply Voltage	
Positive	0 V to +5 V
Negative	-5 V to 0 V
Digital	0 V to +5 V
Drain	0 V to +2 V
Gate	-0.4 V to 0 V
Input Power	0 dBm
Operating Temperature	-40°C to +85°C

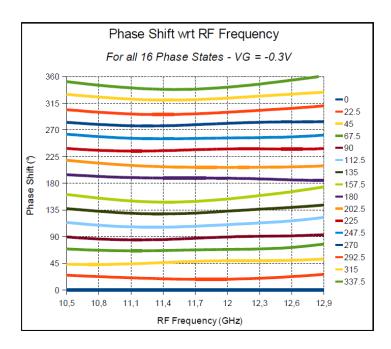
Handling Procedures

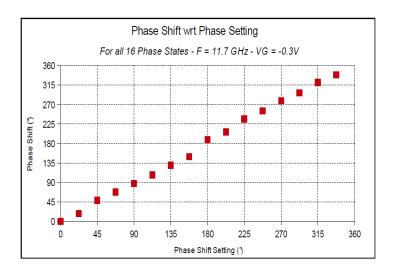

Please observe the following precautions to avoid damage:

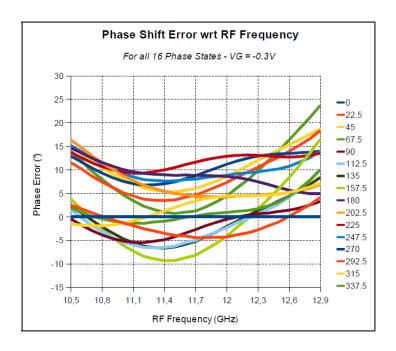

Static Sensitivity

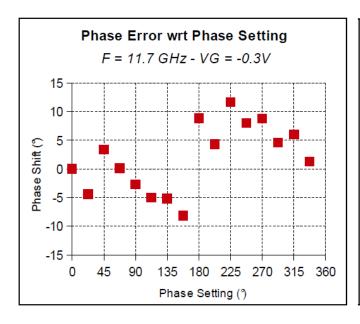

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

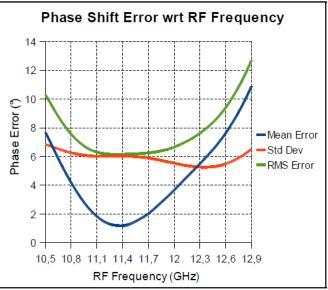
MACOM does not recommend sustained operation near these survivability limits.

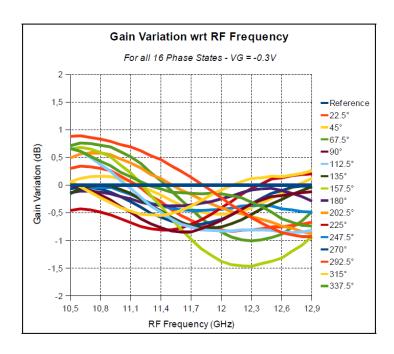


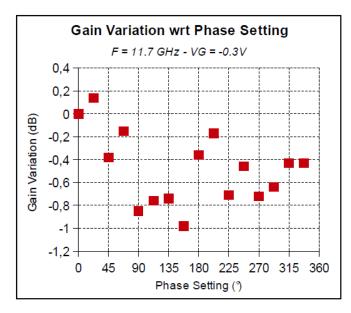


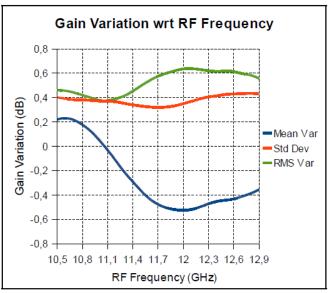


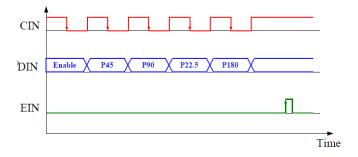











Data (Reference State LOW)

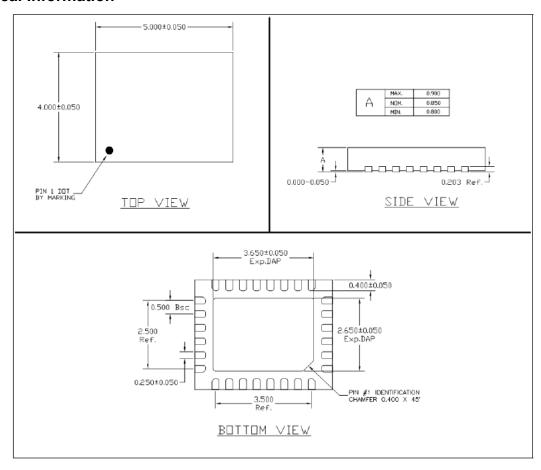
Bit #	Description	Theoretical Value
В0	Enable	_
B1	45° Phase Shifting Cell	45°
B2	90° Phase Shifting Cell	90°
В3	22.5° Phase Shifting Cell	22.5°
B4	180° Phase Shifting Cell	180°

Control Voltage (CMOS Standard Logic)

State	V Min.	V max.
Low	0 V	1 V
High	3 V	V_{DN}

Timing Diagram

- DIN is sampled at the falling edge of CIN.
- Falling edge of EIN must occur when all the 5 bits are loaded and on high level of CIN.
- DIN is transferred and Phase Shifter positions changed on high level of EIN.


Pin Configuration⁵

Pin #	Symbol	Description
1,5,6,20 - 23,25,26,28	NC	Not Connected
2,4,8,16,17,19	GND	Ground
3	RFIN	RF Input
7	VDN	Positive Supply Voltage
9	VSN	Negative Supply Voltage
10	DIN	Data Input
11	CIN	Clock Input
12	EIN	Enable Input
13	EO	Data Output
14	СО	Clock Output
15	DO	Enable Output
18	RFOUT	RF Output
24	VD	Drain Voltage
27	VG	Gate Voltage

^{5.} The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

Mechanical Information

4-Bit, Ku-Band Core Chip 10.70 - 12.75 GHz

CGY2179HV/C1

Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.