

CGY2177AUH/C1

Rev. V1

Features

Insertion Loss: 5 dB @ 5.4 GHz

Phase Shift Range: 360°

RMS Phase Error: 2° @ 5.4 GHz

• RMS Amplitude Variation: 0.25 dB @ 5.4 GHz

Input P1dB: 20 dBm

• Return Loss: 15 dB @ 5.4 GHz (All states)

0 / 5 V Control Lines

Chip Size: 3470 x 2220 μm

Tested, Inspected Known Good Die (KGD)

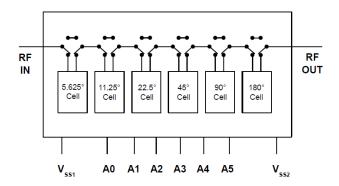
· Samples Available

Demonstration Boards Available

Space and MIL-STD Available

RoHS* Compliant

Applications


- Radar
- Telecommunication
- Instrumentation

Description

The CGY2177AUH/C1 is a high performance GaAs MMIC 6-bit phase shifter operating in C-band. It has a nominal phase shifting range of 0 - 360° in 5.625° steps and uses an optimum combination of switched line and high pass/low pass filters to obtain very low phase error and insertion loss variation. It covers the frequency range of 4.5 to 6.5 GHz.

This die is manufactured using 0.18 µm gate length pHEMT technology. The MMIC uses gold bond pads and backside metallization and is fully protected with Silicon Nitride passivation to obtain the highest level of reliability. This technology has been evaluated for Space applications and is on the European Preferred Parts List of the European Space Agency.

Block Diagram

Ordering Information

Part Number	Package	
CGY2177AUH/C1	DIE	

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Electrical Specifications¹: Freq. = 4.8 - 6.8 GHz, $V_{SS2} = -4.5$ V, $I_{SS2} = 8$ mA, $T_A = +25$ °C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Source Supply Voltage	VS1 pad is open VS2 pad is open	V	-6 -5	-4.5 -3.5	-4 -3
Source Supply Current	_	mA	_	8	_
Insertion Loss	@ Reference State	dB	_	5	_
Phase Range	_	۰	_	360	
RMS Phase Error	5.0 - 6.5 GHz	۰	_	2	_
RMS Attenuation Error	5.0 - 6.5 GHz	dB	_	0.25	_
Input Return Loss	50 Ω Source, All States	dB	_	15	_
Output Return Loss	50 Ω Load, All States	dB	_	15	_
P1dB	_	dBm	_	20	

The RMS value is the root mean square of the error defined as below: Where xi is the difference between the measured value and the expected value.

$$x_{\text{rms}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} = \sqrt{\frac{x_1^2 + x_2^2 + \dots + x_N^2}{N}}$$

Absolute Maximum Ratings^{2,3}

Parameter	Absolute Maximum
Phase Control Inputs	0 to +6 V
Source Supply Voltage when VS2 pad is not used when VS1 pad is no used	-5 to +0.5 V -6 to +0.5 V
Input Power	25 dBm
Junction Temperature	+150°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-55°C to +150°C

Exceeding any one or combination of these limits may cause permanent damage to this device.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should d be used when handling these devices.

MACOM does not recommend sustained operation near these survivability limits.

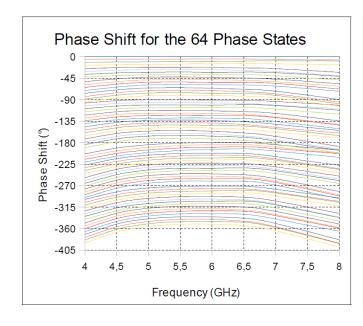
Phase Shifter, C-Band, 6-Bit 4.8 - 6.8 GHz

CGY2177AUH/C1 Rev. V1

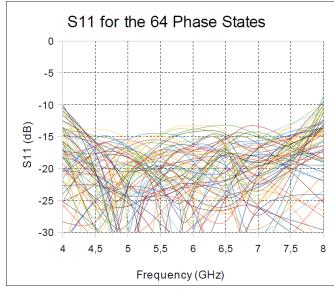
Logic Truth Table

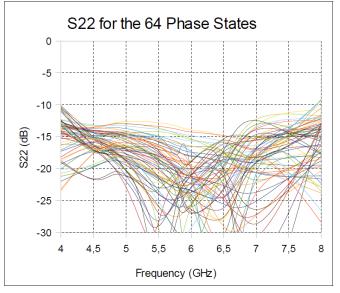
	A0	A1	A2	A3	A4	A 5
Nominal Phase Shift	-5.6°	-11.25°	-22.5°	-45°	-90°	-180°
Phase Shift Activated	1	1	1	1	1	1
Reference State	0	0	0	0	0	0

Logic Truth Table (V)

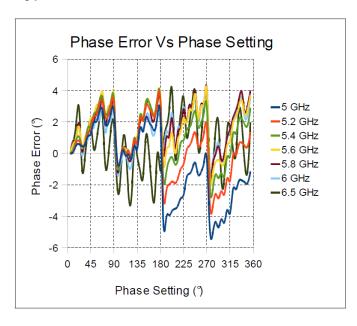

	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Phase Shift (°)	-180°	-90°	-45°	-22.5°	-11.25°	-5.6°
0	0	0	0	0	0	0
-5.6	0	0	0	0	0	1
-11.25	0	0	0	0	1	0
-22.5	0	0	0	1	0	0
-45	0	0	1	0	0	0
-62	0	0	1	0	1	1
-90	0	1	0	0	0	0
-118	0	1	0	1	0	1
-180	1	0	0	0	0	0
-270	1	1	0	0	0	0
-354	1	1	1	1	1	1

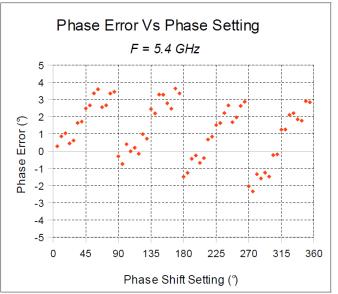

Control Voltage

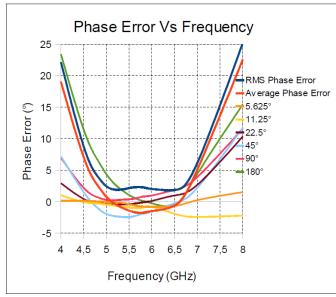

State	Min.	Max.	Unit
Low (0)	0	1	V
High (1)	4	6	V



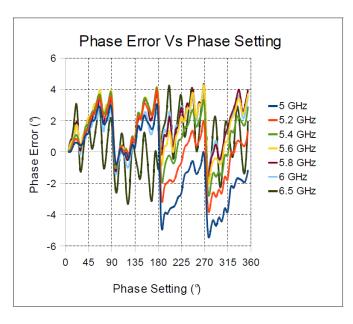
Typical Performance Curves:

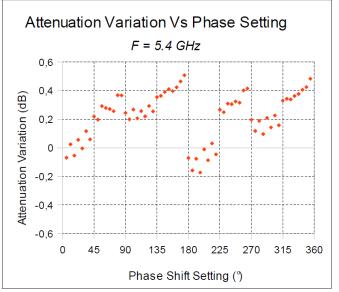


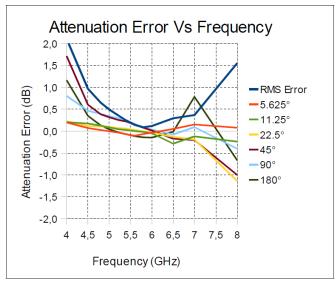




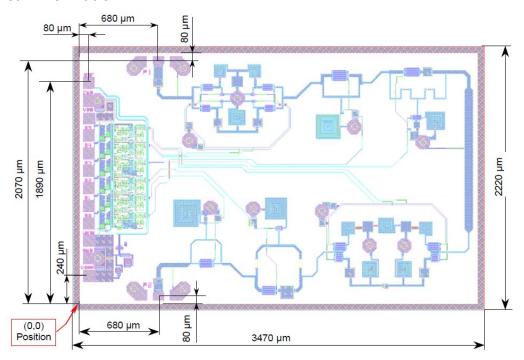
Typical Performance Curves:







Typical Performance Curves:



Mechanical Information:

Chip Size = 3470 x 2220 μ m (± 5 μ m after dicing) DC Pads = 100 x 100 μ m, spacing = 150 μ m, top metal = Au RF Pads = 100 x 100 μ m, pitch = 150 μ m, top metal = Au

Chip Thickness = 100 µm

Pad Position⁴

Ded Neme	Cumphal	Coordinate		Description
Pad Name	Symbol	X	Υ	Description
P2	RF _{OUT}	680	80	RF Port 2
P1	RE _{IN}	680	2070	RF Port 1
VSS2	V _{SS2}	08	240	V _{SS2} power supply
GND	GND	80	390	Ground (back side)
VSS1	V _{SS1}	80	540	V _{SS1} power supply
В0	A0	80	690	5.625° cell control
B1	A1	80	840	11.25° cell control
B2	A2	80	990	22.5° cell control
В3	A3	80	1140	45° cell control
B4	A4	80	1290	90° cell control
B5	A5	80	1440	180° cell control
VDD	V _D	80	1590	Do not use
GND	GND	80	1740	Ground (back side)
REF	V_{REF}	80	1890	Internal negative voltage (to be decoupled to ground)

^{4.} X=0, Y=0 at bottom left corner. See Mechanical Information for more details.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Phase Shifter, C-Band, 6-Bit 4.8 - 6.8 GHz

CGY2177AUH/C1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.