

CGY2176AUH/C1 Rev. V1

Features

- Insertion Loss: 5 dB @ 10 GHz
- Attenuation Range: 31.5 dB
- RMS Attenuation Error: 0.25 dB @ 10 GHz
- Input P1dB: 20 dBm
- Return Loss: < -13 dB @ 14 GHz (All states)
- 0 / 5 V Control Lines
- Chip Size = 2600 x 1200 µm ± 5 µm
- Tested, Inspected Known Good Die (KGD)
- Samples Available
- Demonstration Boards Available
- Space and MIL-STD Available
- RoHS* Compliant

Applications

- Radar
- Telecommunication
- Instrumentation
- Space Rated Applications

Description

The CGY2176AUH/C1 is a high performance GaAs MMIC 6-bit attenuator operating in L, S, C, and X band.. This device has a nominal attenuation range of 31.5 dB in 0.5 dB steps. It covers the frequency range of 1 to 15 GHz.

The die is manufactured using 0.18 µm gate length pHEMT Technology. The MMIC uses gold bond pads and backside metallization and is fully protected with Silicon Nitride passivation to obtain the highest level of reliability. This technology has been evaluated for Space applications and is on the European Preferred Parts List of the European Space Agency.

Ordering Information

Part Number	Package
CGY2176AUH	DIE

Block Diagram

Pad Configuration^{1,2}

Pad #	Function	
Port 1	RF Input	
Port 2	RF Output	
REF	Reference Output Voltage (do not connect)	
A05	0.5 dB cell control	
A1	1 dB cell control	
A2	2 dB cell control	
A4	4 dB cell control	
A8	8 dB cell control	
A16	16 dB cell control	
VSS	Negative Supply Voltage	
GND	Ground (back side)	
GND	Ground (back side)	

1. MACOM recommends connecting No Connection (N/C) pins to ground.

The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.

* Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

1

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

CGY2176AUH/C1

Rev. V1

Electrical Specifications: Measured On Wafer Freq. = 5.4 GHz, V_{SS2} = -4.5 V, I_{SS2} = 8 mA, T_A = +25°C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Source Supply Voltage	V _{SS2} , V _{SS1} Pad is Open V _{SS1} , V _{SS2} Pad is Open	V	-6.0 -5.0	-4.5 -3.5	-4.0 -3.0
Insertion Loss (Reference State)	_	dB	—	5.6	—
Attenuation Range		dB	—	31.5	—
Input & Output Return Loss	All States, 50 Ω Source, 50 Ω Load	dB	—	-15	—
RMS Attenuation Error ³		dB	—	0.2	—
RMS Phase Error ³		0	—	1.3	—
P1dB	_	dBm	—	25	—

3. The RMS value is the root mean square of the error defined as below:

Where x_i is the difference between the measured value and the expected value.

$$x_{\rm rms} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x_i^2} = \sqrt{\frac{x_1^2 + x_2^2 + \dots + x_N^2}{N}}$$

Absolute Maximum Ratings^{4,5}

Parameter	Absolute Maximum	
Attenuation Control Inputs	6 V	
Source Supply Voltage V _{SS2} Pad is Open V _{SS1} Pad is Open	-5.0 to 0.5 V -6.0 to 0.5 V	
Input Power	30 dBm	
Junction Temperature	+150°C	
Operating Temperature	-40°C to +85°C	
Storage Temperature	-55°C to +150°C	

4. Exceeding any one or combination of these limits may cause permanent damage to this device.

5. MACOM does not recommend sustained operation near these survivability limits.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

CGY2176AUH/C1

Rev. V1

Logic Truth Table

Signal Name	A05	A1	A2	A4	A 8	A16
Nominal Attenuation	0.5 dB	1 dB	2 dB	4 dB	8 dB	16 dB
Pad Name ⁶	B0	B1	B2	B3	B4	B5
Attenuation Activated	1	1	1	1	1	1
Reference State	0	0	0	0	0	0

Logic Truth Table (V)

Signal Name	A05	A1	A2	A4	A8	A16
Attenuation (dB)	0.5	1	2	4	8	16
0	0	0	0	0	0	0
0.5	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
4	0	0	0	1	0	0
5	0	1	0	1	0	0
8	0	0	0	0	1	0
10	0	0	1	0	1	0
15	1	1	1	1	1	0
16	0	0	0	0	0	1
20	0	0	0	1	0	1
25	0	1	0	0	1	1
30	0	0	1	1	1	1
31.5	1	1	1	1	1	1

Control Voltage

State	Min.	Тур.	Max.	Unit
Low (0)	0	—	1	V
High (1)	4	_	6	V

6. See die drawing on page 7 for proper die pad names

³

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance Curves: On Wafer Measurement Results⁷, V_{SS2} = -4.5 V

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance Curves: On Wafer Measurement Results⁷

7. Measurement data de-embedded for input & output probe inductance of 0.3 nH

5

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance Curves: On Wafer Measurement Results⁷

7. Measurement data de-embedded for input & output probe inductance of 0.3 nH

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

CGY2176AUH/C1

Rev. V1

Chip Size = $3800 \times 2250 \ \mu m \ (\pm 5 \ \mu m)$ DC Pads = $100 \times 100 \ \mu m$, spacing = $150 \ \mu m$, top metal = Au RF Pads = $100 \times 100 \ \mu m$, top metal = Au Chip Thickness = $100 \ \mu m$

Pad Position^{8,9}

Ded Name	Cirmal	Coordinate		Description
Pad Name	Signai	X	Y	Description
Port 1	RF _{IN}	3428	125	RF Input
Port 2	RF _{OUT}	3428	2125	RF Output
VSS2	V _{SS2}	130	291.5	V_{SS2} Supply Voltage, V_{SS1} not connected
GND	GND	130	441.5	Ground (connected to MMIC back side metal)
VSS1	V _{SS1}	130	591.5	V _{SS1} Supply Voltage, V _{SS2} not connected
B0	A05	130	741.5	0.5 dB cell control
B1	A1	130	891.5	1 dB cell control
B2	A2	130	1041.5	2 dB cell control
B3	A4	130	1191.5	4 dB cell control
B4	A8	130	1341.5	8 dB cell control
B5	A16	130	1491.5	16 dB cell control
VDD	VD	130	1641.5	Do Not Use
GND	GND	130	1791.5	Ground (connected to MMIC back side metal)
REF	V _{REF}	130	1941.5	-3 V DC voltage available at this pad, (Do Not Connect)

8. Only V_{SS1} or V_{SS2} is to be connected. For example, if V_{SS2} is connected, V_{SS1} must be left open.

9. The power supply (V_{SS1} or V_{SS2}) and REF must be decoupled to the ground with 100 nF capacitors as close as possible to the chip.

7

For further information and support please visit: <u>https://www.macom.com/support</u>

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

⁸

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.