

CGY2145UH/C1 Rev. V1

Features

- Wide Frequency Range: 0.5 45 GHz
- Small Signal Gain: 12.7 dB
- Noise Figure: 2.6 dB @ 20 GHz
- Noise Figure Minimum: 1.8 dB @ 9 GHz
- Power Consumption: 420 mW
- Input Return Loss: >13.5 dB @ 20 GHz
- Output Return Loss: >16.5 dB @ 20 GHz
- P1dB: 18 dBm @ 20 GHz
- Chip Size: 1850 x 1060 µm
- 100% RF Tested, Inspected Known Good Die
- Space & MIL-STD Available
- RoHS* Compliant

Applications

- Radar
- Space

1

- Telecommunication
- Instrumentation
- General Purpose Wide Band Amplifier

Description

The CGY2145UH/C1 is a GaAs very wide band low noise amplifier MMIC. This amplifier has a low noise figure of 2.6 dB and a P1dB of 18 dBm at 20 GHz. This LNA exhibits a small signal gain of 12.7 dB from 100 MHz to 28 GHz and >12 dB up to 44 GHz.

This device features single-ended input and output and operates with a 5 V supply voltage via an external bias tee.

The MMIC is manufactured using the qualified 0.13 μ m pHEMT GaAs D01PH technology. The D01PH process has been evaluated for Space applications and is on the European Preferred Parts List of the European Space Agency.

Block Diagram

Ordering Information

Part Number	Package	
CGY2145UH/C1	Die	

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

CGY2145UH/C1

Rev. V1

DC Electrical Specifications: Freq. = 0.5 - 45 GHz, V_{DD} = 5 V, R_L = 50 Ω , T_A = +25°C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Supply Voltage		V	+4.75	+5.00	+5.25
Supply Current	—	mA	_	85	90
Gate Supply Voltage 1	See note 1	V	-3.0	-0.3	0.0
Gate Supply Voltage 2	_	V	0.0	+3.0	+3.0

1. VG1 determines the typical drain current. VG1 should be raised from -3 V until the drain DC current reaches 85 mA.

AC Electrical Specifications: On Wafer, Freq. = 0.5 - 45 GHz, V_{DD} = 5 V, V_{G2} = 2.3 V, V_{G1} = -0.3 V, I_{DD} = 85 mA, RL = 50 Ω , T_A = +25°C

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Reference Gain	3 GHz ²	dB	_	12.6	—
Gain Ripple ³	100 MHz - 35 GHz 35 GHz - frequency cutoff	dB	-0.6 -1.0		+1.5
Frequency Cutoff	High (Gain 3 GHz - 3 dB) Low (See note 4)	GHz kHz	44	46	 50
Input Return Loss	100 MHz - 22 GHz 22 - 35 GHz 35 - 45 GHz	dB	_	-16.0 -14.0 -11.5	-13.5 -12.0 -10.0
Output Return Loss	100 MHz - 30 GHz 30 - 40 GHz 40 - 45 GHz	dB	-35 — —	-16 -13 -14	-15 -10 -12
Noise Figure	5 - 35 GHz	dB	_	<4.5	—
Output P1dB	1 - 30 GHz	dBm	—	18	—
Microwave Stability Factor	-10°C to +85°C, All passive source and load	-	1.2	_	—

2. Measurement is guaranteed by correlation down to the lower frequency cut-off. 3 GHz is specified as a reference for convenience of measurement.

3. Low frequency gain ripple assumes the use of drain decoupling close to the chip, as proposed on the bonding pattern.

4. The input and output are DC coupled. The low frequency cut-off is set by the choice of the input blocking capacitor or by the output bias tee used for drain current supply voltage.

2

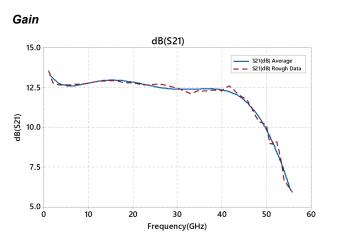
Absolute Maximum Ratings^{5,6}

Parameter	Absolute Maximum
Supply Voltage	-0.5 V to +8.0 V
Supply Current	240 mA
Gate Voltage 1	-5 to 0 V
Gate Voltage 2	-5 to +5.0 V
Junction Temperature	+150°C
Operating Temperature	-10°C to +85°C
Storage Temperature	-55°C to +150°C

5. Exceeding any one or combination of these limits may cause permanent damage to this device.

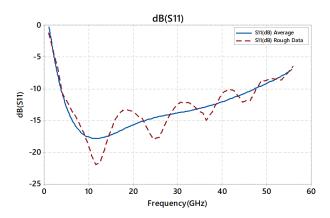
6. MACOM does not recommend sustained operation near these survivability limits.

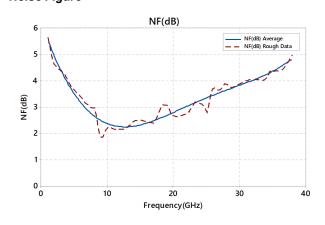
Handling Procedures


Please observe the following precautions to avoid damage:

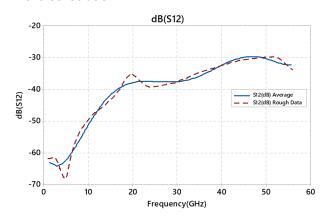
Static Sensitivity

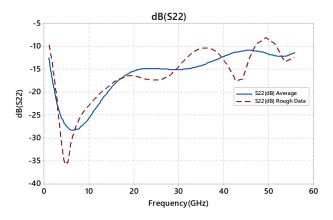
These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

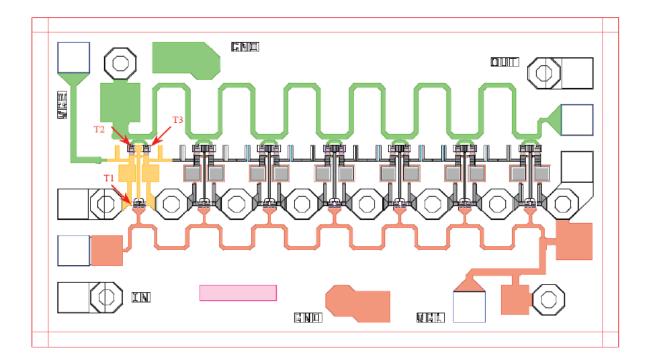


Typical Performance Curves: On Wafer, V_{DD} = 5 V, V_{G2} = 2.3 V, I_{DD} = 85 mA, T_A = +25°C


Input Return Loss


Noise Figure

Output Return Loss


4

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

For further information and support please visit: https://www.macom.com/support

CGY2145UH/C1 Rev. V1

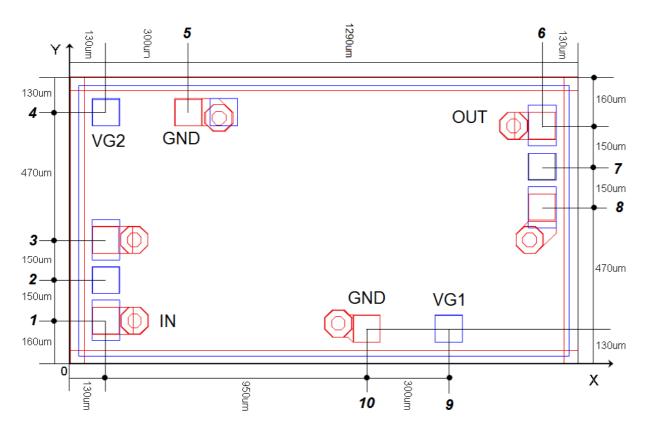
Application Information: Bonding Pattern

Operating & Handling Instructions

This device is a very high performance GaAs device and as such, care must be taken at all times to avoid damage due to inappropriate handling, mounting, packaging and biasing conditions.

1- Power Supply Sequence

5


The following power supply sequence is recommended.

- a) Make sure the transient peaks from DC supply voltages do not exceed the limiting values.
- b) Pinch off the device by setting Vg1 to -4.5 V and Vg2 to 0.0 V.
- c) Increase Vdd = 5.0 V while monitoring the drain current.
- d) Increase Vg2 to 2.3 V
- e) Increase Vg1 slowly from -3 V until the drain current reaches 84 mA.
- f) Apply the RF input signal.

CGY2145UH/C1 Rev. V1

Mechanical Information

Chip Size = 1850 x 1060 μ m (Tolerance ±15 μ m) GND, V_{G1}, V_{G2}, IN, OUT Pads = 100 x 100 μ m Chip Thickness = 100 μ m Backside Metal = TiAu Passivation: PECVD deposited Si₃N₄

6

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

CGY2145UH/C1 Rev. V1

Pad Position⁷

Pad Name	Pad#	Coordinate X Y		Description		
Fau Name	Fau#			Description		
GND	1	160	130	Connected to ground with on-chip via holes		
IN	2	310	130	RF Input		
GND	3	460	130	Connected to ground with on-chip via holes		
V _{G2}	4	930	130	Gate Supply Voltage 2, must be decoupled to ground using external capacitors		
GND	5	930	430	Connected to ground with on-chip via holes		
GND	6	900	1720	Connected to ground with on-chip via holes		
OUT	7	750	1720	RF Output		
GND	8	600	1720	Connected to ground with on-chip via holes		
V _{G1}	9	130	1380	Gate Supply Voltage 2, must be decoupled to ground using external capacitors		
GND	10	130	1080	Connected to ground with on-chip via holes		

7. X = 0, Y = 0 at bottom left corner.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

7

CGY2145UH/C1 Rev. V1

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

⁸

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.