

# CGY2135UH/C1

Rev. V1

#### **Features**

P1dB: 31.2 dBm @ 20.5 GHz
 P<sub>SAT</sub>: 32.3 dBm @ 20.5 GHz

PAE: 20.2% @ 20.5 GHz @ P1dB

Gain: 25.4 dB @ 20.5 GHz

Power Supply: 4 V

50 Ω Input & Output Matched
Input & Output Return Loss: 12 dB
Chip Size: 3.65 x 3.14 x 0.1 mm
Space and MIL-STD Available

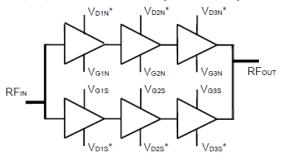
RoHS\* Compliant

## **Applications**

Radar

Telecommunication

Instrumentation


### **Description**

The CGY2135UH/C1 is a high performance dual line-up 3 stage GaAs power amplifier MMIC designed to operate in the K band from 18 to 23 GHz.

The die is manufactured using the high performance 0.13 µm gate length pHEMT power technology D01PH. The MMIC uses gold bond pads and backside metallization and is fully protected with Silicon Nitride passivation to obtain the highest level of reliability. This technology has been evaluated for Space applications and is on the European Preferred Parts List of the European Space Agency.

## **Block Diagram**

V<sub>D1N</sub>, V<sub>D2N</sub>, V<sub>D3N</sub> are available externally but are internally interconnected



V<sub>D1S</sub>, V<sub>D2S</sub>, V<sub>D3S</sub> are available externally but are internally interconnected

### **Ordering Information**

| Part Number  | Package |
|--------------|---------|
| CGY2135UH/C1 | DIE     |

<sup>\*</sup> Restrictions on Hazardous Substances, compliant to current RoHS EU directive.



# Electrical Specifications: Measured On Wafer, $T_A = +25$ °C, $I_{DN} = I_{DS} = 600$ mA

| Parameter                           | Test Conditions                             | Units | Min. | Тур.                 | Max. |
|-------------------------------------|---------------------------------------------|-------|------|----------------------|------|
| Drain Supply Voltage                | _                                           | V     | _    | 4                    | _    |
| Gate Supply Voltage                 | I <sub>DN</sub> + I <sub>DS</sub> = 1200 mA | V     | _    | -0.39                | _    |
| Total Supply Current                | @ P <sub>SAT</sub>                          | mA    | _    | 1200                 | _    |
| Gain                                | 18.0 GHz<br>20.5 GHz<br>23.0 GHz            | z dB  |      | 23.9<br>25.4<br>26.6 | _    |
| Noise Figure                        | _                                           | dB    | _    | TBD                  | _    |
| P1dB                                | 18.0 GHz<br>20.5 GHz<br>23.0 GHz            | dBm   | _    | 30.5<br>31.2<br>32.3 | _    |
| Saturated Power (P <sub>SAT</sub> ) | 18.0 GHz<br>20.5 GHz<br>23.0 GHz            | dBm   | _    | 31.8<br>32.3<br>33.1 | _    |
| Power Added Efficiency              | _                                           | %     | _    | 20.2                 | _    |
| Output IP3                          | _                                           | dBm   | _    | TBD                  |      |
| IMD3                                | _                                           | dBc   | _    | TBD                  |      |
| Reverse Isolation                   | RF <sub>OUT</sub> /RF <sub>IN</sub>         | dB    | _    | -40                  |      |
| Input Return Loss                   | _                                           | dB    | _    | 12                   | _    |
| Output Return Loss                  | _                                           | dB    | _    | 12                   | _    |
| Leakage when HPA Off All Gates      | _                                           | dBm   | _    | TBD                  | _    |

# **Absolute Maximum Ratings**<sup>1,2</sup>

| Parameter                | Absolute Maximum            |
|--------------------------|-----------------------------|
| Input Power              | 20 dBm                      |
| Voltage<br>Gate<br>Drain | -2.5 V to 0 V<br>0 to 5.5 V |
| Current<br>Gate<br>Drain | -1 to +1 mA<br>750 mA       |
| Junction Temperature     | +175°C                      |
| Operating Temperature    | -40°C to +85°C              |
| Storage Temperature      | -55°C to +85°C              |

<sup>1.</sup> Exceeding any one or combination of these limits may cause permanent damage to this device.

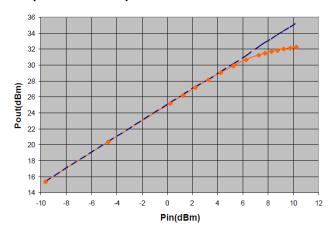
#### **Thermal Characteristics**

| Parameter          | Absolute Maximum |  |
|--------------------|------------------|--|
| Thermal Resistance | 8°C/W            |  |

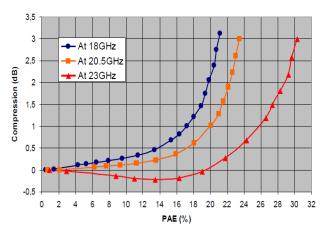
## **Handling Procedures**

Please observe the following precautions to avoid damage:

## **Static Sensitivity**


These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

MACOM does not recommend sustained operation near these survivability limits.



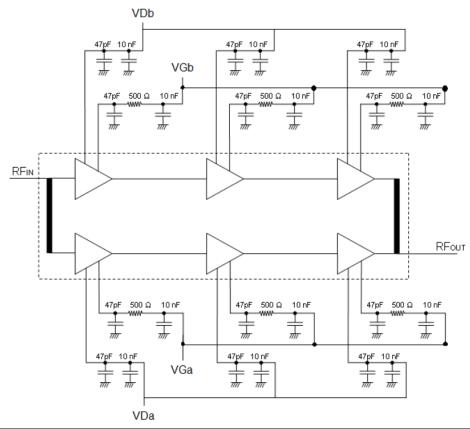

# Typical Performance Curves: On Wafer Measurements $V_{DN}=V_{DS}=4\ V,\ V_{GXN}=V_{GXS}=-0.4\ V\ (I_{DN}+I_{DS}=1200\ mA\ ),\ T_A=+25^{\circ}C$

#### Output Power vs. Input Power



#### Compression vs. PAE





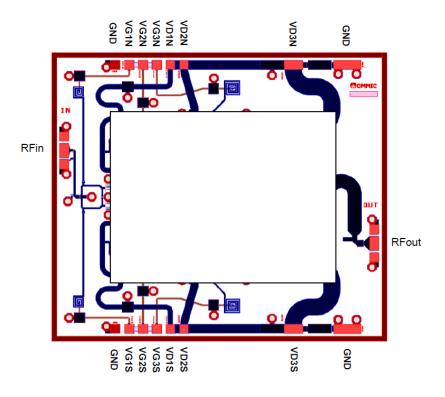

CGY2135UH/C1

Rev. V1

#### **Application Schematic**

To prevent instability of the customer design it is highly recommended to place a 47 pF RF decoupling chip capacitor at each DC terminal with the shortest possible bonding wires. Additionally, a 10 nF capacitor can be added on a drain connection. In the gate circuitry, a 500  $\Omega$  resistor have been added in series with each gate introducing some low pass filtering in case of fast power switching.




| Component Name       | Value | Туре           | Comment                                                                                                                 |
|----------------------|-------|----------------|-------------------------------------------------------------------------------------------------------------------------|
| All 47 pF capacitors | 47 pF | Chip Capacitor | Chip capacitor PRESIDIO COMPONENTS P/N SA151BX470M2HX5#013B soldered close to the die with bonding as short as possible |
| All 500 Ω resistors  | 500 Ω | Chip Resistor  | Chip resistor US MICROWAVES RG1421- 500-1% soldered close to the 47 pF chip capacitor with bonding as short as possible |
| All 10 nF capacitors | 10 nF | Chip Capacitor | MURATA GMA085R71C103MD01T GM260 X7R 103M<br>16M100 PM520                                                                |

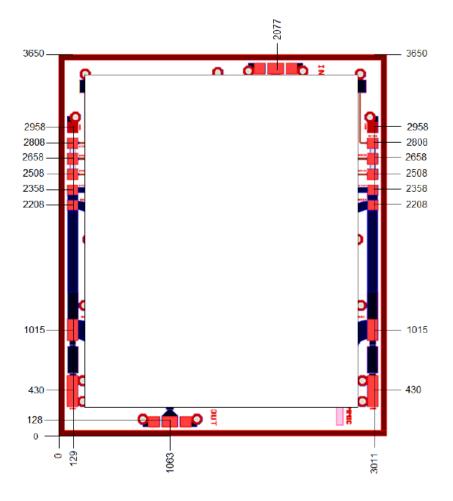
Due to the highly symmetrical design of the component and the requirements of the power combiner, it is recommended to keep drain current IDN equal to IDS, for the same reason, it is recommended to keep drain voltage VDN equal the VDS.

In order to validate each stage of the amplifier with respect to the DC, it is recommended to set firstly all gate voltage  $V_{\text{GXN}}$ ,  $X_{\text{S}}$  to -2 V, then to set the corresponding drain voltage  $V_{\text{DN}}$ ,  $V_{\text{DS}}$  to +1 V and check that the corresponding drain current  $I_{\text{DS}}$ ,  $I_{\text{DS}}$  stay at a very low level, after that verification,  $V_{\text{DN}}$ ,  $V_{\text{DS}}$  can be set to 4 V. When  $_{\text{VGXN}}$ ,  $X_{\text{S}}$  is changed from -2.5 V to roughly -0.4 V, the corresponding drain current increases slowly in a controlled manner to reach the typical targeted value.



# **Die Layout**




### **Pinout**

| Symbol | Pad  | Description                  |
|--------|------|------------------------------|
| RFOUT  | Out  | RF Output                    |
| RFIN   | In   | RF Input                     |
| VD3N   | VD3B | Drain 3 Supply Voltage North |
| VD2N   | VD2B | Drain 2 Supply Voltage North |
| VD1N   | VD1B | Drain 1 Supply Voltage North |
| VG3N   | VG3B | Gate 3 Supply Voltage North  |
| VG2N   | VG2B | Gate 2 Supply Voltage North  |
| VG1N   | VG1B | Gate 1 Supply Voltage North  |
| VD3S   | VD3A | Drain 3 Supply Voltage South |
| VD2S   | VD2A | Drain 2 Supply Voltage South |
| VD1S   | VD1A | Drain 1 Supply Voltage South |
| VG3S   | VG3A | Gate 3 Supply Voltage South  |
| VG2S   | VG2A | Gate 2 Supply Voltage South  |
| VG1S   | VG1A | Gate 1 Supply Voltage South  |
| GND    | GND  | Ground                       |

<sup>3.</sup> The exposed pad centered on the package bottom must be connected to RF, DC and thermal ground.



# **Bonding Pad Coordinates**



# Power Amplifier, 33 dBm 18 - 23 GHz



CGY2135UH/C1

Rev. V1

## MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.