

CGHV59070 70 W, 4.4 - 5.9 GHz, 50 V, RF Power GaN HEMT

Description

The CGHV59070 is an internally matched gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV59070, operating from a 50 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. The good efficiency, high gain and wide bandwidth capabilities make the CGHV59070 ideal for linear applications such as wireless infrastructure and for compressed amplifier circuits. The transistor is available in a flange and pill package.

Features

- 4.4 5.9 GHz Operation
- 90 W P_{OUT} typical at 50 V
- 14 dB Power Gain
- 55% Drain Efficiency
- Internally Matched

Applications

- Wireless Infrastructure
- Marine Radar
- Weather Monitoring
- Air Traffic Control
- Maritime Vessel Traffic Control
- Port Security
- Troposcatter Communications
- Beyond Line of Sight BLOS

Typical Performance Over 4.8 - 5.9 GHz ($T_c = 25^{\circ}C$)

Parameter	4.8 GHz	5.0 GHz	5.2 GHz	5.4 GHz	5.6 GHz	5.8 GHz	5.9 GHz	Units
Power Gain at 50 V	13.7	14.2	14.5	14.6	14.3	13.7	13.3	dB
Output Power at 50 V	84	93	101	102	95	84	76	W
Drain Efficiency at 50 V	55	56	57	56	54	50	48	%

Notes:

¹ Measured in CGHV59070F-AMP (838269) under 100μs pulse width, 10% duty cycle, P_{IN} = 35.5 dBm (3.5 W)

Large Signal Models Available for ADS and MWO

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions	
Drain-Source Voltage	V _{DSS}	150	M	25°C	
Gate-to-Source Voltage	V_{GS}	-10, +2	V	25°C	
Storage Temperature	T _{STG}	-65, +150	°C		
Operating Junction Temperature	TJ	225	Ĵ		
Maximum Forward Gate Current	I _{GMAX}	10.4	mA	– 25°C	
Maximum Drain Current ¹	IDMAX	6.3	А	25 C	
Soldering Temperature ²	Ts	245	°C		
Screw Torque	τ	40	in-oz		
Thermal Resistance, Junction to Case ³	P	2.99	00 /00	85°C, CW @ P _{DISS} = 57 W	
Thermal Resistance, Junction to Case ³	$R_{\theta JC}$	0.85	°C/W	85°C, 100μs, 10% Duty Cycle @ P _{DISS} = 70 W	
Case Operating Temperature ⁴	T _C	-40, +150	°C		

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

³ Measured for the CGHV59070F at P_{DISS} = 57.6 CW or P_{DISS} = 70 W Pulsed

⁴ See also, the Power Dissipation De-rating Curve on Page 8

Electrical Characteristics ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹	<u>~</u>			°			
Gate Threshold Voltage	V _{GS(th)}	-3.8	-2.8	-2.3	V _{DC}	$V_{DS} = 10 \text{ V}, \text{ I}_{D} = 10.4 \text{ mA}$	
Saturated Drain Current ²	I _{DS}	6.8	9.7	—	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$	
Drain-Source Breakdown Voltage	V _{BR}	125	—	—	V _{DC}	V _{GS} = -8 V, I _D = 10.4 mA	
RF Characteristics ³ (T _c = 25°C, F ₀ = 5.2 - 5.9 GHz unless otherwise noted)							
Small Signal Gain at 5.2 GHz	G _{SS}	15.55	17	—	dB	V_{DD} = 50 V, I_{DQ} = 0.15 A, P_{IN} = 10 dBm	
Output Power at 5.2 GHz		75.9	100	—			
Output Power at 5.55 GHz	Pout	15.9	100	—	W		
Output Power at 5.9 GHz		62.4	77	—			
Drain Efficiency at 5.2 GHz		50	55	—		V_{DD} = 50 V, I_{DQ} = 0.15 A, P_{IN} = 35.5 dBm	
Drain Efficiency at 5.55 GHz	η	46	54	—	%		
Drain Efficiency at 5.9 GHz		40	48	—			
Power Gain at 5.2 GHz	GP		14.5	—	dB		
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, V_{DD} = 50 V, I_{DQ} = 0.15 A, P_{IN} = 35.5 dBm Pulsed	
Dynamic Characteristics							
Input Capacitance	C _{GS}	_	36	—			
Output Capacitance	C _{DS}	_	109	—	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$	
Feedback Capacitance	C _{GD}	_	0.26	—			

Notes:

¹ Measured on wafer prior to packaging

² Scaled from PCM data

³ Measured in CGHV59070F-AMP

⁴ Drain Efficiency = P_{OUT}/P_{DC}

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

²

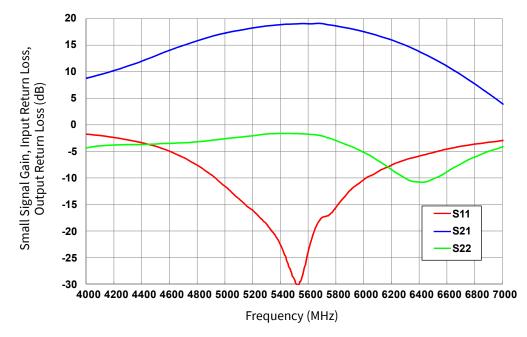
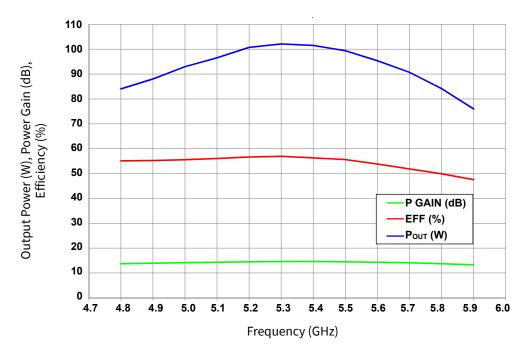
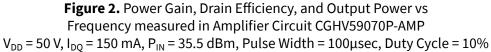




Figure 1. Small Signal Gain and Return Losses of the CGHV59070-AMP vs Frequency V_{DD} = 50 V, I_{DQ} = 150 mA

³ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

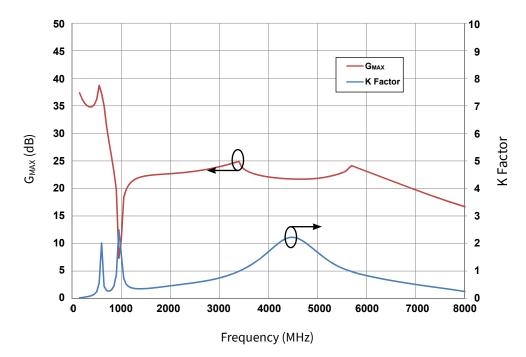
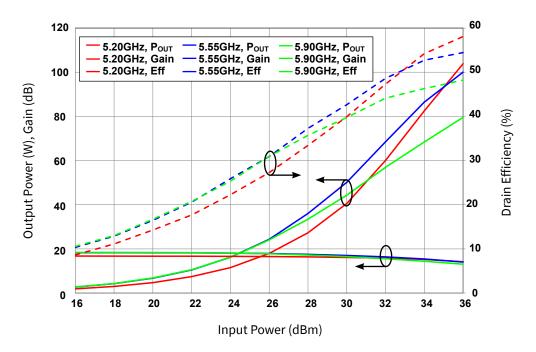
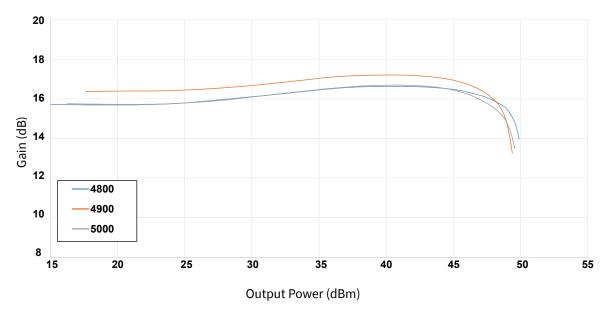
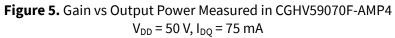


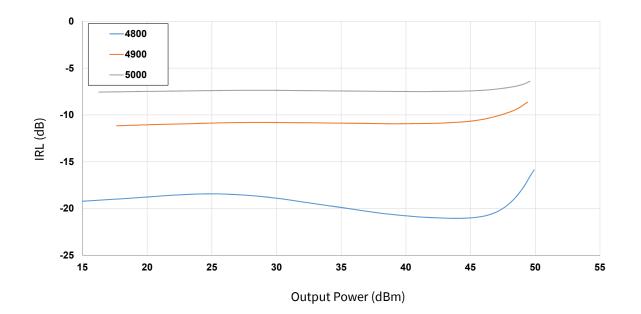
Figure3. Maximum Available Gain and K Factor of the CGHV59070 $V_{DD} = 50 \text{ V}, I_{DO} = 150 \text{ mA}$

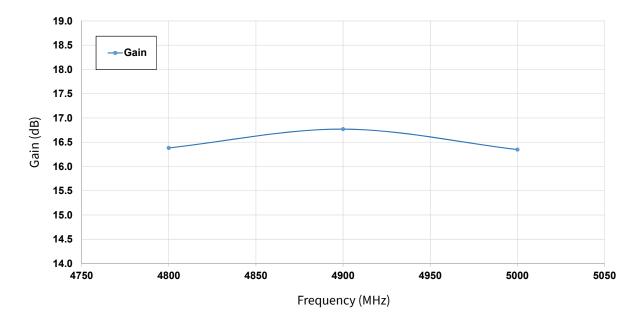



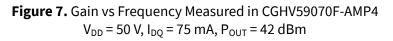

Figure 4. Power Gain, Drain Efficiency, and Output Power vs Input Power of the CGHV59070 V_{DD} = 50 V, I_{DQ} = 150 mA, Pulse Width = 100µsec, Duty Cycle = 10%

4

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit:




Figure 6. Input Return Loss vs Output Power Measured in CGHV59070F-AMP4 $V_{DD} = 50 \text{ V}, I_{DQ} = 75 \text{ mA}$


⁵ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

CGHV59070

Typical Performance

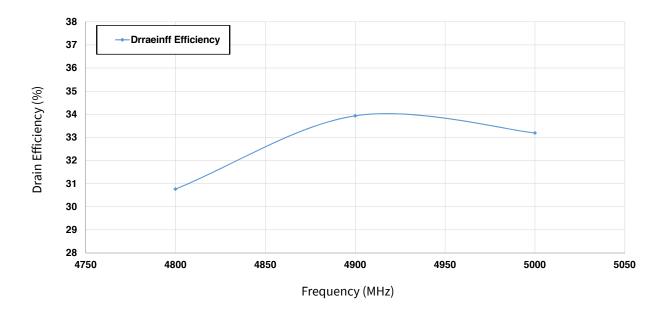


Figure 8. Drain Efficiency vs Frequency Measured in CGHV59070F-AMP4 V_{DD} = 50 V, I_{DQ} = 75 mA, P_{OUT} = 42 dBm

6 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit:

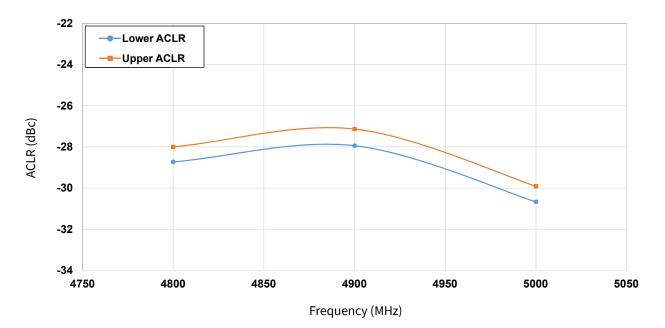
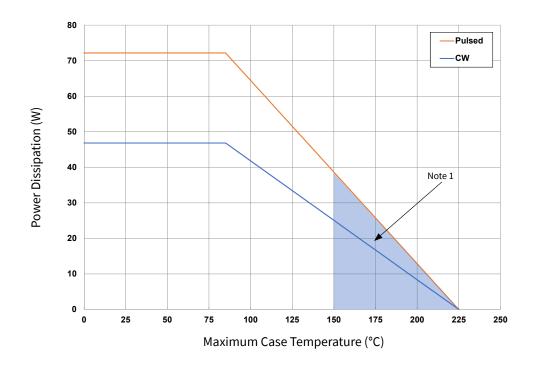
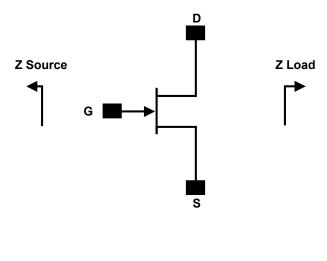


Figure 9. ACLR vs Frequency Measured in CGHV59070F-AMP4 V_{DD} = 50 V, I_{DQ} = 75 mA, P_{OUT} = 42 dBm, WCDMA 7.5 dB PAR Signal


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1B	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	СDМ	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

⁷ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support


CGHV59070 Power Dissipation De-Rating Curve, Pulsed & CW (Pulsed Width = $100\mu s$, Duty Cycle = 10%)

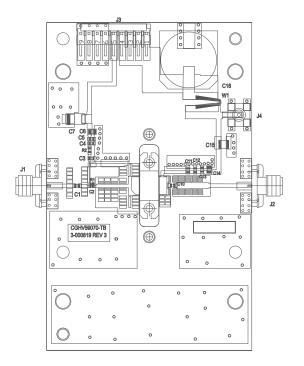
Note

¹ Area exceeds Maximum Case Temperature (See Page 2).

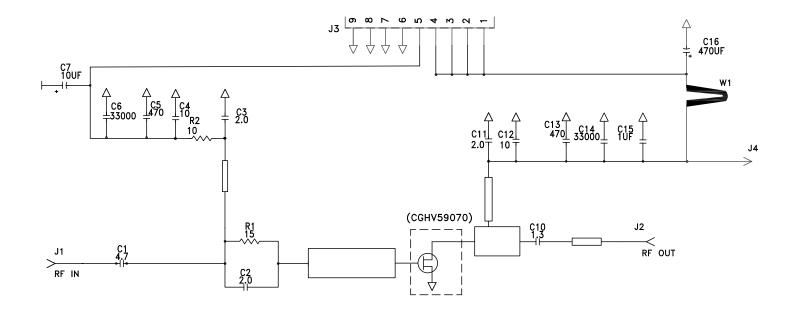
Simulated Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
4400	2.6 - j12.9	14.0 - j6.9
4600	3.8 - j14.2	15.0 - j6.7
4800	5.8 - j15.3	16.0 - j7.0
5000	8.8 - j15.4	16.7 - j8.0
5200	8.8 - j14.7	17.1 - j9.1
5300	8.5 - j14.5	16.9 - j10.0
5400	8.1 - j14.2	16.5 - j10.7
5500	7.8 - j13.9	15.4 - j11.4
5600	7.5 - j13.6	15.4 - j12.0
5700	7.2 - j13.3	14.6 - j12.5
5800	6.9 - j13.3	13.8 - j12.8
5900	6.6 - j12.7	12.9 - j13.1

Notes:


- 1 V_{DD} = 50 V, I_{DQ} = 150 mA in the 440224 package
- ² Optimized for power gain, P_{SAT} and PAE
- ³ When using this device at low frequency, series resistors should be used to maintain amplifier stability

8 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.


For further information and support please visit: <u>https://www.macom.com/support</u>

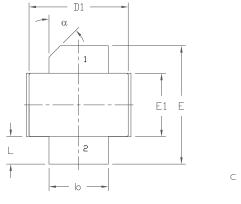
CGHV59070-AMP Demonstration Amplifier Circuit Outline

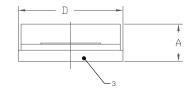
CGHV59070-AMP Demonstration Amplifier Circuit Schematic

9 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

CGHV59070-AMP Demonstration Amplifier Circuit

CGHV59070-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
R1	RES, 15, OHM, +/- 1%, 1/16W, 0402	1
R2	RES, 1/16W, 0603, 1%,10.0 OHMS	1
C1	CAP, 4.7pF, +/-0.1pF, 0603, ATC600S	1
C10	CAP, 1.3pF, +/-0.1pF, 0603, ATC600S	1
C3, C11	CAP, 2.0pF, +/-0.1pF, 0603, ATC600S	1
C2	CAP, 2.0pF, +/- 0.05pF, 0402, ATC600L	1
C4, C12	CAP, 10pF, +/-5%, 0603, ATC600S	2
C5, C13	CAP, 470pF, 5%, 100V, 0603, X	2
C6, C14	CAP, 33000pF, 0805, 100V, X7R	2
C15	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
С7	CAP, 10µF 16V TANTALUM	1
W1	CABLE, 18 AWG, 4.2 inch	1
C16	CAP, 470µF, 20%, 80V, ELECT, SMD Size K	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK, SMD	1
_	Taconic RF-35, PCB, 20 mil	1
Q1	CGHV59070	1


10

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Product Dimensions CGHV59070P (Package Type - 440170)

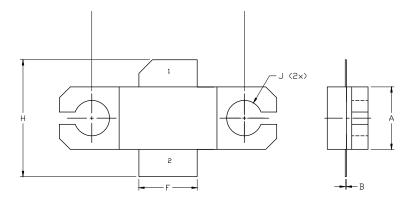
A1

NDTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M -1994.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

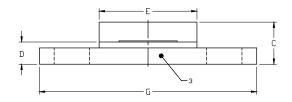

4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INCHES		MILLIN	NOTES	
DIM	MIN	MAX	MIN	MAX	
А	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2×
с	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
Е	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2×
α	45'	REF	45'	REF	

PIN 1. GATE

DRAIN
 SOURCE

Product Dimensions CGHV59070F (Package Type – 440224)

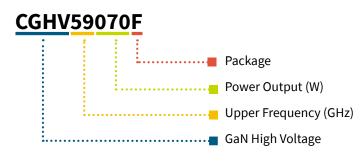

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION. 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
А	0.225	0.235	5.72	5.97
В	0.004	0.006	0.10	0.15
С	0.145	0.165	3.68	4.19
D	0.077	0.087	1.96	2.21
E	0.355	0.365	9.02	9.27
F	0.210	0.220	5.33	5.59
G	0.795	0.805	20.19	20.45
н	0.400	0.460	10.16	11.68
J	ø.	130	3.3	30
k	0.5	562	14.	27

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE


 11
 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

 For further information and support please visit:
 Rev. 2.7, 2022-12-8

 https://www.macom.com/support
 Rev. 2.7, 2022-12-8

Part Number System

Table 1.

Table	2.
-------	----

Parameter	Value	Units
Upper Frequency ¹	5.9	GHz
Power Output	70	W
Package	Flange/Pill	—

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

https://www.macom.com/support

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV59070F	GaN HEMT	Each	C6HV59070F
CGH59070P	GaN HEMT	Each	CGHV59070P C969335
CGHV59070F-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹⁴ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support