

CGHV50200F

200 W, 4.4 - 5.0 GHz, 50-Ohm Input/Output Matched, GaN HEMT

Description

The CGHV50200F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV50200F ideal for troposcatter communications, 4.4 - 5.0 GHz C-Band SatCom applications and Beyond Line of Sight. The GaN HEMT is matched to 50 ohm, for ease of use. It is designed for CW, pulse, and linear mode of power amplifier operation. The transistor is supplied in a ceramic/metal flange package, type 440217.

PN: CGHV50200F Package Type: 440217

Features

- 4.4 5.0 GHz Operation
- 180 W Typical P_{SAT}
- 11.5 dB Typical Power Gain
- 48% Typical Power Efficiency
- 50 Ohm Internally Matched

Applications

- Troposcatter Communications
- · Beyond Line of Sight BLOS
- Satellite Communications

Typical Performance Over 4.4-5.0 GHz ($T_c = 25^{\circ}C$) of Demonstration Amplifier

Parameter	4.4 GHz	4.6 GHz	4.8 GHz	5.0 GHz	Units
Small Signal Gain	14.9	14.9	14.9	15.1	dB
CW Output Power ¹	173	177	170	166	W
Output Power ²	100	100	126	101	W
Power Gain ²	11.4	11.6	11.0	11.8	dB
Power Added Efficiency ²	49	47	48	48	%

Notes:

² Measured at -30 dBc, 1.6 MHz from carrier, in the CGHV50200F-AMP1 under OQPSK modulation, 1.6 Msps, PN23, Alpha Filter = 0.2

Large Signal Models Available for ADS and MWO

 $^{^{1}}$ Measured CW in the CGHV50200F-AMP at P_{IN} = 43 dBm

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	V	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Storage Temperature	T _{STG}	-65, +150	0.0	
Operating Junction Temperature	TJ	225	°C	
Maximum Forward Gate Current	I _{GMAX}	41.6	mA	– 25°C
Maximum Drain Current ¹	I _{DMAX}	17	Α	25 C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.81	°C/W	CW, 85°C, P _{DISS} = 166.4 W
Case Operating Temperature ³	T _C	-40, +150	°C	

Notes:

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹ (T _C = 25°C)							
Gate Threshold Voltage	V _{GS(th)}	-3.4	-3.0	-2.6		$V_{DS} = 10 \text{ V}, I_D = 41.6 \text{ mA}$	
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	$V_{DS} = 50 \text{ V}, I_{D} = 1.0 \text{ A}$	
Saturated Drain Current ²	I _{DS}	33.28	37.4	_	Α	$V_{DS} = 6 \text{ V}, V_{GS} = 2 \text{ V}$	
Drain-Source Breakdown Voltage	V_{BR}	100	_	_	V_{DC}	$V_{GS} = -8 \text{ V}, I_D = 41.6 \text{ mA}$	
RF Characteristics ² (T _C = 25°C,	$F_0 = 4.4 - 9$	5.0 GHz	z unless	otherv	vise not	ted)	
Small Signal Gain at 4.4 GHz		14	15.4	_			
Small Signal Gain at 4.8 GHz	Gss	14	15.3	_		$V_{DD} = 40 \text{ V}, I_D = 1.0 \text{ A}, P_{IN} = 10 \text{ dBm}$	
Small Signal Gain at 5.0 GHz		14.25	15.2	_	dB		
Power Gain ⁴ at 4.4 GHz			12.1	_	иь		
Power Gain ⁴ at 4.8 GHz	Gp	10.5	12.4	_			
Power Gain ⁴ at 5.0 GHz			12.2	_			
Power Added Efficiency ⁴ at 4.4 GHz			42	_			
Power Added Efficiency ⁴ at 4.8 GHz	PAE	30	37	_	%	$V_{DD} = 40 \text{ V}, I_{D} = 1.0 \text{ A}, P_{OUT} = 48 \text{ dBm}$	
Power Added Efficiency ⁴ at 5.0 GHz			40	_			
OQPSK Linearity ⁴ at 4.4 GHz		_	-29	-25			
OQPSK Linearity ⁴ at 4.8 GHz	ACLR	_	-34	-28	dBc		
OQPSK Linearity ⁴ at 5.0 GHz		_	-34	-26			
Output Mismatch Stress	VSWR	_	_	3:1	Ψ	No damage at all phase angles, $V_{DD} = 40 \text{ V}$, $I_D = 1.0 \text{ A}$, CW $P_{OUT} = 180 \text{ W}$	

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

³ See also, Power Dissipation Derating Curve on page 11

¹ Measured on wafer prior to packaging

² Scaled from PCM data

³ Measured in CGHV50200F-AMP

 $^{^4}$ Measured under 1.6 Msps OQPSK Modulation, PN23, Alpha Filter = 0.2

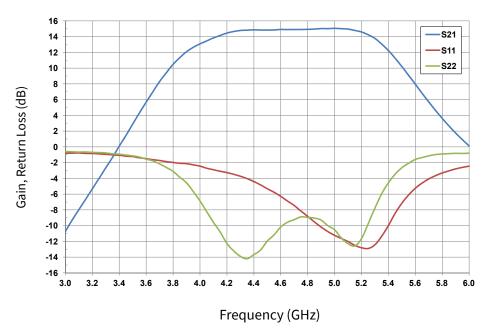
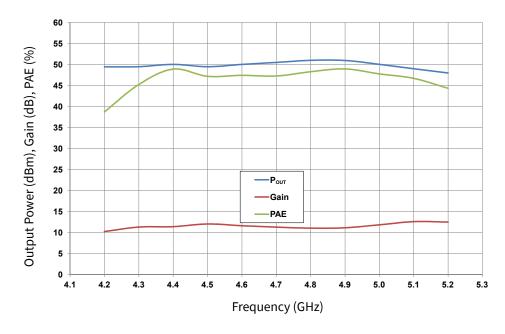



Figure 1. Small Signal S-Parameters CGHV50200F in Test Fixture $V_{DD} = 40 \text{ V}, I_{DQ} = 1 \text{ A}, T_{CASE} = 25^{\circ}\text{C}$

Figure 2. Modulated @ Spectral Regrowth = -30dBc, 1.6 MHz from Carrier 1.6 Msps OQPSK Modulation $V_{DD} = 40 \text{ V}, I_{DO} = 1 \text{ A}, T_{CASE} = 25 ^{\circ}\text{C}$

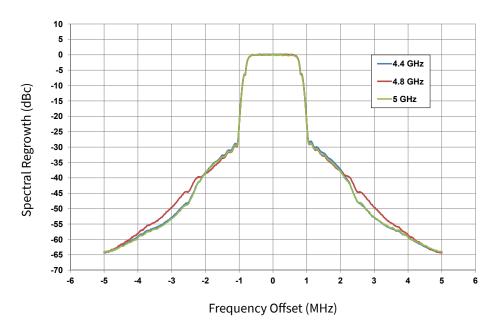


Figure 3. Spectral Mask @ Average Output Power = 48 dBm, 1.6 Msps OQPSK Modulation $V_{DD} = 40 \text{ V}, I_{DO} = 1 \text{ A}, T_{CASE} = 25^{\circ}\text{C}$

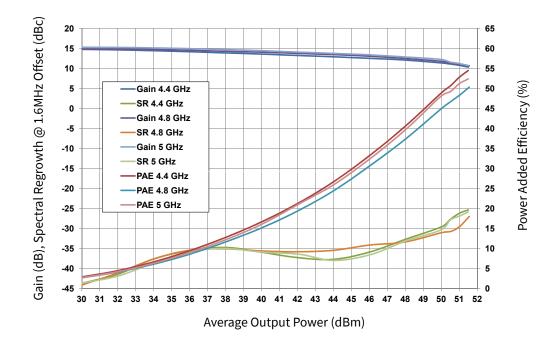


Figure 4. Modulated Power Sweep 1.6 Msps OQPSK Modulation $V_{DD} = 40 \text{ V}, I_{DO} = 1 \text{ A}, T_{CASE} = 25^{\circ}\text{C}$

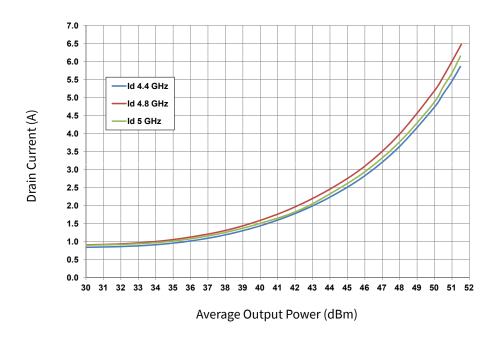


Figure 5. Modulated Power Sweep 1.6 Msps OQPSK Modulation $V_{DD} = 40 \text{ V}$, $I_{DQ} = 1 \text{ A}$, $T_{CASE} = 25 ^{\circ}\text{C}$

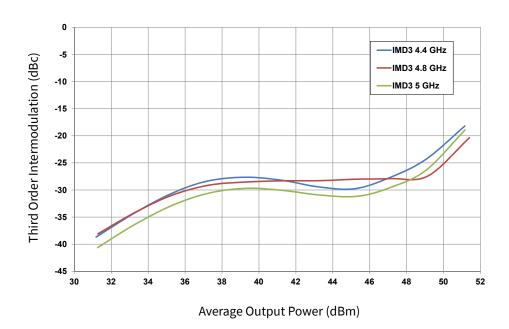


Figure 6. Two Tone Power Sweep IMD3 @ 1 MHz Carrier Spacing $V_{DD} = 40 \text{ V}, I_{DO} = 1 \text{ A}, T_{CASE} = 25^{\circ}\text{C}$

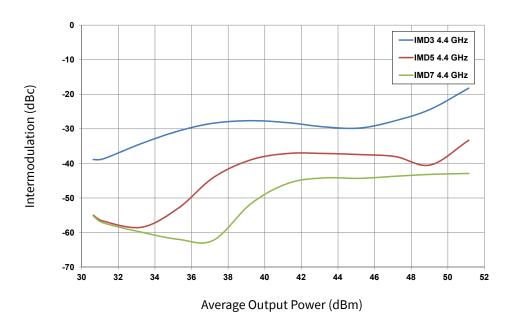
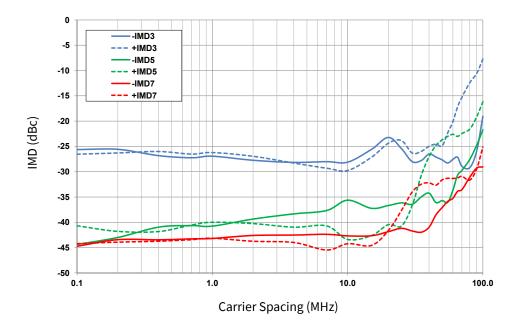



Figure 7. Two Tone Power Sweep IMD @ 1 MHz Carrier Spacing, 4.4 GHz $V_{DD} = 40 \text{ V}, I_{DQ} = 1 \text{ A}, T_{CASE} = 25^{\circ}\text{C}$

Figure 8. Two Tone Carrier Spacing Sweep @ 48 dBm Average Ouput Power, 4.4 GHz $V_{DD} = 40 \text{ V}, I_{DO} = 1 \text{ A}, T_{CASE} = 25 ^{\circ}\text{C}$

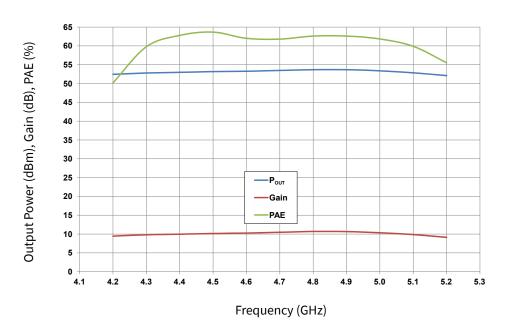
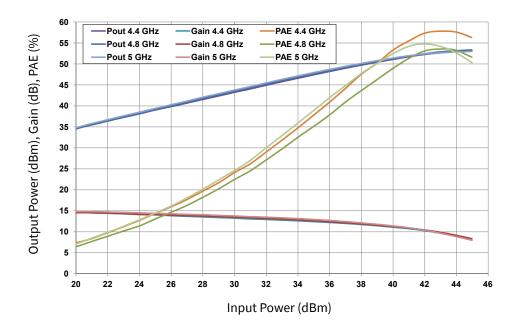



Figure 9. Pulsed vs Frequency @ P_{IN} = 43 dBm CGHV50200F in Test Fixture 10% Duty, 100 μ s Pulse Width V_{DD} = 40 V, I_{DO} = 1 A, T_{CASE} = 25°C

Figure 10. Pulsed Power Sweep CGHV50200F in Test Fixture 10% Duty, $100\mu s$ Pulse Width $V_{DD} = 40 \text{ V}$, $I_{DQ} = 1 \text{ A}$, $T_{CASE} = 25^{\circ}\text{C}$

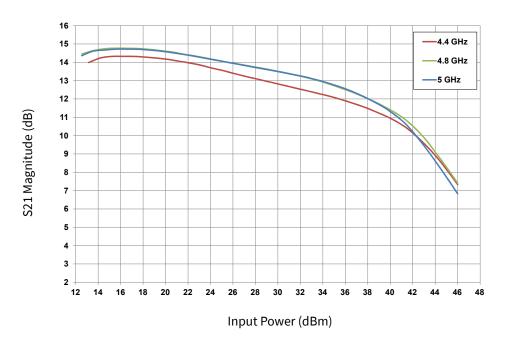
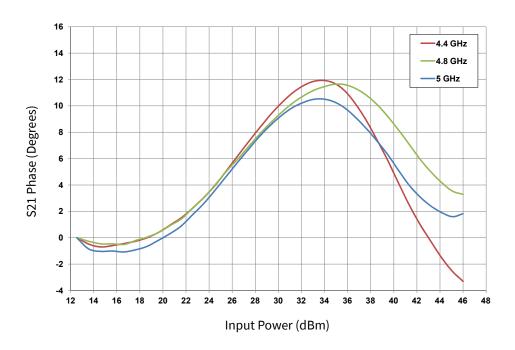
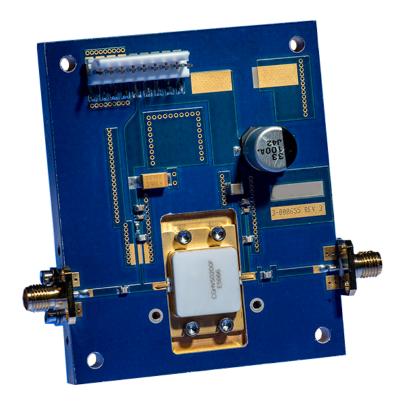
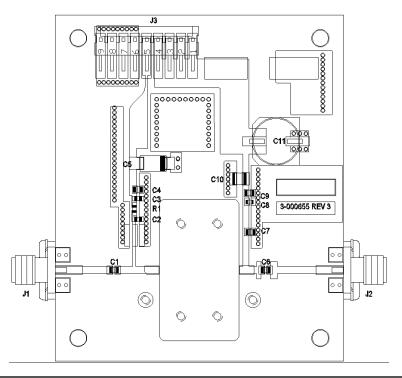
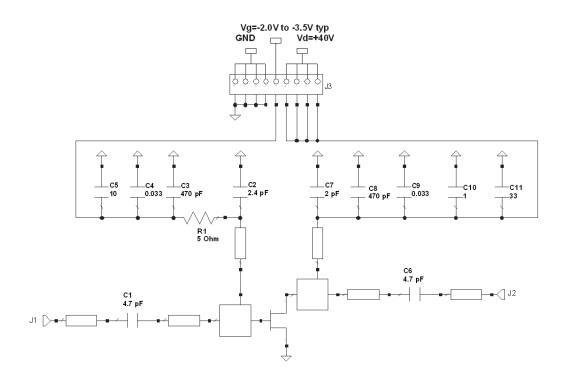


Figure 11. AM-AM $V_{DD} = 40 \text{ V}, I_{DQ} = 1 \text{ A}, T_{CASE} = 25 ^{\circ}\text{C}$

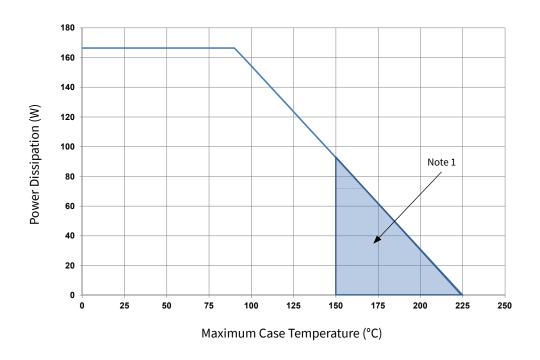

Figure 12. AM-PM $V_{DD} = 40 \text{ V}$, $I_{DQ} = 1 \text{ A}$, $T_{CASE} = 25 ^{\circ}\text{C}$

CGHV50200F-AMP Demonstration Amplifier Circuit



CGHV50200F-AMP Demonstration Amplifier Circuit Outline

CGHV50200F-AMP Demonstration Amplifier Circuit Outline



CGHV50200F-AMP Demonstration Amplifier Circuit

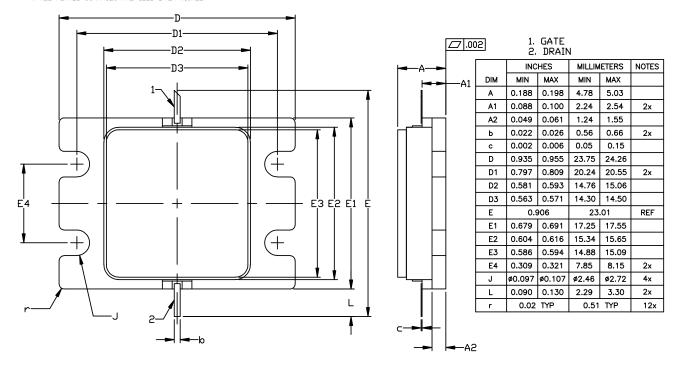
Designator	Description	Qty
R1	RES, 5.1, OHM, +/- 1%, 1/16W,0603	1
C1,C6	CAP, 4.7pF, +/-1%, 250V, 0805	2
C2	CAP, 2.4pF, +/- 0.25pF, 250V, 0603	1
C3,C8	CAP, 470pF, 5%, 100V, 0603, X	2
C4,C9	CAP, 33000pF, 0805, 100V, X7R	2
C5	CAP 10μF 16V TANTALUM	1
C7	CAP, 2.0pF, +/-1%, 250V, 0805,	1
C10	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
C11	CAP, 33μF, 20%, G CASE	1
J1,J2	CONN, SMA, PANEL MOUNT JACK	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
_	PCB, RF35, 2.5 X 3.0 X 0.250	1
_	2-56 SOC HD SCREW 1/4 SS	4
_	#2 SPLIT LOCKWASHER SS	4
Q1	CGHV50200F	1

CGHV50200F Power Dissipation De-rating Curve

Notes:

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1B	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	C3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C


 $^{^{\}rm 1}$ Shaded area exceeds Maximum Case Operating Temperature (See Page 2)

Product Dimensions CGHV50200F (Package Type — 440217)

NOTES: (UNLESS OTHERWISE SPECIFIED)

- 1. INTERPRET DRAWING IN ACCORDANCE WITH ANSI Y14.5M-2009
- 2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF .020 BEYOND EDGE OF LID
- 3. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION
- 4. ALL PLATED SURFACES ARE GOLD OVER NICKEL

Part Number System

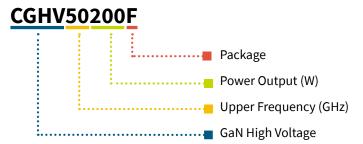


Table 1.

Parameter	Value	Units	
Upper Frequency ¹	5.0	GHz	
Power Output	200	W	
Package	Flange	_	

Table 2.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV50200F	GaN HEMT	Each	Contraction
CGHV50200F-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.