

CGHV40320D

320 W, 4.0 GHz, GaN HEMT Die

Description

The CGHV40320D is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT). GaN has superior properties compared to silicon or gallium arsenide, including higher breakdown voltage, higher saturated electron drift velocity, and higher thermal conductivity. GaN HEMTs offer greater power density and wider bandwidths compared to Si and GaAs transistors.

Features

- 19 dB Typical Small Signal Gain at 4 GHz
- 65% Typical Power Added Efficiency
- 320 W Typical P_{SAT}
- 50 V Operation
- High Breakdown Voltage
- Up to 4 GHz Operation

Applications

- **Broadband amplifiers**
- **Tactical communications**
- Satellite communications
- Industrial, Scientific, and Medical amplifiers
- Class A, AB, Linear amplifiers suitable for OFDM, W-CDMA, EDGE, CDMA waveforms

Packaging Information

- Bare die are shipped in Gel-Pak® containers
- Non-adhesive tacky membrane immobilizes die during shipment

Large Signal Models Available for ADS and MWO

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions	
Drain-Source Voltage	V_{DSS}	150	V	25°C	
Gate-to-Source Voltage	V _{GS}	-10, +2	V _{DC}		
Storage Temperature	T _{STG}	-65, +150	°C		
Operating Junction Temperature	TJ	225			
Maximum Drain Current ¹	I _{DMAX}	12	A	Α 2596	
Maximum Forward Gate Current	I _{GMAX}	41.8	mA 25°C		
Thermal Resistance, Junction to Case (packaged) ²		0.44	9 <i>C</i> /M	F0C 1C7 2 W D::+:	
Thermal Resistance, Junction to Case (die only)	R _{θJC}	0.35	°C/W	85°C, 167.2 W Dissipation	
Mounting Temperature	T _s	320	°C	30 seconds	

Notes:

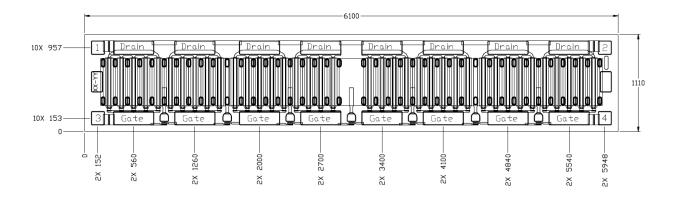
Electrical Characteristics (Frequency = 4 GHz unless otherwise stated; $T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics							
Gate Pinch-Off Voltage	V_P	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_D = 41.8 \text{ mA}$	
Drain Current ¹	I _{DSS}	33	41.8	_	Α	$V_{DS} = 6 \text{ V}, V_{GS} = 2.0 \text{ V}$	
Drain-Source Breakdown Voltage	V_{BR}	125	_	_	V	$V_{GS} = -8 \text{ V}, I_D = 41.8 \text{ mA}$	
On Resistance	R _{on}	_	0.07	_	Ω	V _{DS} = 0.1 V	
Gate Forward Voltage	V_{G-ON}	_	1.9	_	V	I _{GS} = 41.8 mA	
RF Characteristics	RF Characteristics						
Small Signal Gain	G _{SS}	_	19	_	dB	V 50V L 500 A	
Saturated Power Output ¹	P _{SAT}	_	320	_	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}$	
Drain Efficiency ²	η	_	65	_	%	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{SAT} = 320 W	
Intermodulation Distortion	IM3	_	-30	_	dBc	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{OUT} = 320 W PEP	
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, V _{DD} = 50 V, I _{DQ} = 500 mA, P _{OUT} = 320 W Pulse	
Dynamic Characteristics							
Input Capacitance	C _{GS}	_	55.6	_			
Output Capacitance	C _{DS}	_	11.56	_	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$	
Feedback Capacitance	C _{GD}	_	1.23	_			

Notes:

¹ Current limit for long term, reliable operation

² Eutectic die attach using 80/20 AuSn mounted to a 10 mil thick Cu15Mo85 carrier


¹ Scaled from PCM data

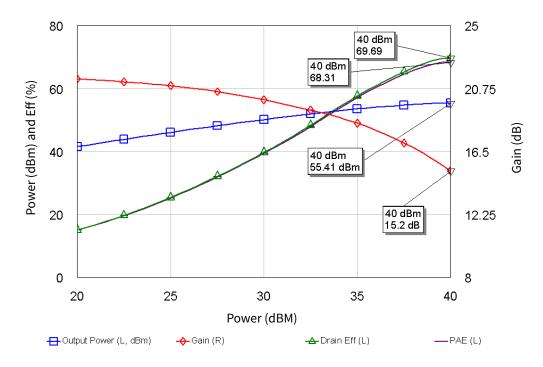
 $^{^2}$ P_{SAT} is defined as I_G = 4.0 mA

 $^{^3}$ Drain Efficiency = P_{OUT} / P_{DC}

DIE Dimensions (units in microns)

Overall die size 6100×1110 (+0/-50) microns, die thickness 100 microns. All Gate and Drain pads must be wire bonded for electrical connection.

Assembly Notes:


- Recommended solder is AuSn (80/20) solder. Refer to the website for the Eutectic Die Bond Procedure application note
- Vacuum collet is the preferred method of pick-up.
- The backside of the die is the Source (ground) contact.
- Die back side gold plating is 5 microns thick minimum.
- Thermosonic ball or wedge bonding are the preferred connection methods.
- Gold wire must be used for connections.
- Use the die label (XX-YY) for correct orientation.

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D

Typical Performance

Figure 1. CGHV40320D Output Power, Gain and Efficiency vs. Input Power at $T_{CASE} = 25^{\circ}C$ $V_{DD} = 50V$, $I_{DO} = 500$ mA, Frequency = 2.7 GHz

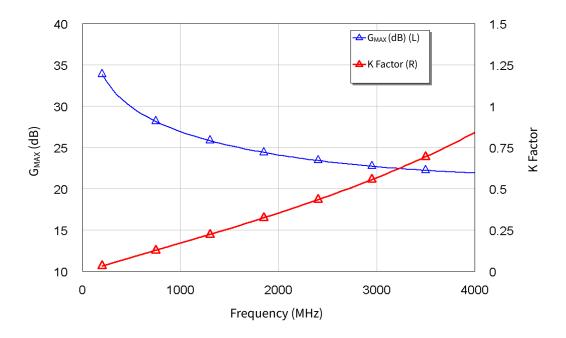


Figure 2. CGHV40320D G_{MAX} and K Factor vs. Frequency at T_{CASE} = 25°C V_{DD} = 50 V, I_{DO} = 500 mA

Typical Die S-Parameters (Small Signal, V_{DS} = 50 V, I_{DQ} = 500 mA, magnitude/angle)

Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
0.5	0.964	-175.19	5.49	73.16	0.005	-15.49	0.719	-171.16
0.6	0.966	-175.83	4.48	69.32	0.005	-19.04	0.732	-170.45
0.7	0.967	-176.28	3.75	65.72	0.005	-22.35	0.746	-169.86
0.8	0.969	-176.62	3.20	62.34	0.005	-25.45	0.761	-169.41
0.9	0.970	-176.88	2.77	59.16	0.005	-28.35	0.776	-169.08
1	0.972	-177.10	2.42	56.17	0.005	-31.06	0.790	-168.88
1.1	0.973	-177.28	2.14	53.35	0.005	-33.59	0.804	-168.78
1.2	0.974	-177.44	1.90	50.70	0.004	-35.96	0.817	-168.76
1.3	0.976	-177.59	1.70	48.21	0.004	-38.16	0.829	-168.81
1.4	0.977	-177.71	1.53	45.87	0.004	-40.22	0.841	-168.91
1.5	0.978	-177.83	1.38	43.66	0.004	-42.13	0.852	-169.06
1.6	0.979	-177.95	1.25	41.59	0.004	-43.91	0.862	-169.24
1.7	0.980	-178.05	1.14	39.65	0.004	-45.56	0.871	-169.44
1.8	0.981	-178.15	1.04	37.81	0.004	-47.11	0.879	-169.66
1.9	0.982	-178.24	0.96	36.08	0.003	-48.54	0.887	-169.89
2	0.983	-178.33	0.88	34.45	0.003	-49.88	0.895	-170.12
2.1	0.984	-178.42	0.81	32.90	0.003	-51.12	0.901	-170.36
2.2	0.985	-178.50	0.75	31.44	0.003	-52.28	0.907	-170.61
2.3	0.985	-178.58	0.70	30.06	0.003	-53.36	0.913	-170.85
2.4	0.986	-178.65	0.65	28.75	0.003	-54.37	0.918	-171.08
2.5	0.987	-178.73	0.61	27.50	0.003	-55.30	0.923	-171.32
2.6	0.987	-178.80	0.57	26.32	0.003	-56.17	0.927	-171.55
2.7	0.988	-178.86	0.53	25.19	0.003	-56.99	0.931	-171.77
2.8	0.988	-178.93	0.50	24.11	0.002	-57.74	0.935	-171.99
2.9	0.989	-178.99	0.47	23.08	0.002	-58.45	0.938	-172.20
3	0.989	-179.05	0.44	22.10	0.002	-59.10	0.942	-172.41
3.2	0.990	-179.17	0.39	20.26	0.002	-60.28	0.947	-172.80
3.4	0.990	-179.28	0.35	18.56	0.002	-61.29	0.952	-173.17
3.6	0.991	-179.39	0.32	16.99	0.002	-62.15	0.957	-173.52
3.8	0.991	-179.49	0.29	15.54	0.002	-62.87	0.960	-173.84
4	0.992	-179.58	0.26	14.18	0.002	-63.47	0.964	-174.15
4.2	0.992	-179.68	0.24	12.90	0.002	-63.94	0.967	-174.43
4.4	0.992	-179.76	0.22	11.71	0.001	-64.30	0.969	-174.70
4.6	0.993	-179.85	0.20	10.58	0.001	-64.55	0.971	-174.96
4.8	0.993	-179.93	0.19	9.51	0.001	-64.68	0.973	-175.20
5	0.993	179.99	0.17	8.50	0.001	-64.70	0.975	-175.42
5.2	0.993	179.92	0.16	7.54	0.001	-64.59	0.977	-175.64
5.4	0.993	179.84	0.15	6.62	0.001	-64.35	0.978	-175.84
5.6	0.994	179.77	0.14	5.75	0.001	-63.96	0.980	-176.03
5.8	0.994	179.70	0.13	4.91	0.001	-63.41	0.981	-176.22
6	0.994	179.63	0.12	4.10	0.001	-62.68	0.982	-176.39

To download the s-parameters in s2p format, go to the CGHV40320D Product page.

Part Number System



Table 1.

Parameter	Value	Units	
Upper Frequency ¹	4.0	GHz	
Power Output	320	W	
Package	Bare Die	_	

Note:

Table 2.

Character Code	Code Value	
А	0	
В	1	
С	2	
D	3	
Е	4	
F	5	
G	6	
Н	7	
J	8	
К	9	
Examples:	1A = 10.0 GHz 2H = 27.0 GHz	

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV40320D	GaN HEMT Bare Die	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.