

CGHV40180P

180 W, DC - 2.0 GHz, 50 V, GaN HEMT

Description

The CGHV40180P is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV40180P, operating from a 50 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain, and wide bandwidth capabilities making the CGHV40180P ideal for linear and compressed amplifier circuits. The transistor is available in a 2-lead pill package.

Package Types: 440206 PN's: CGHV40180P

Features

- Up to 2.0 GHz operation
- 24 dB small signal gain at 900 MHz
- 20 dB power gain at 900 MHz
- 250 W typical output power at 900 MHz
- 75% efficiency at P_{SAT}

Applications

- Military communications
- Public safety VHF-UHF applications
- Radar
- Medical
- Broadband amplifiers

Typical Performance Over 800 MHz - 1000 MHz ($T_c = 25$ °C), 50 V

Parameter	800 MHz	850 MHz	900 MHz	950 MHz	1000 MHz	Units
Small Signal Gain	25.6	25.2	24.6	24.4	24.3	dB
Gain @ P _{IN} 34 dBm	20.4	20.8	20.4	20.1	20.1	dB
Output Power @ P _{IN} 34 dBm	275	302	275	257	257	W
EFF @ P _{IN} 34 dBm	67	75	76	73	71	%

Note

Measured CW in the CGHV40180P-AMP Application circuit.

Absolute Maximum Ratings (Not Simultaneous) at 25 °C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	150	Volts	25 °C
Gate-to-Source Voltage	V _{GS}	-10, +2	Volts	25 °C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature ¹	T _J	225	°C	
Maximum Forward Gate Current	I _{GMAX}	42	mA	25 °C
Maximum Drain Current ¹	I _{DMAX}	12.1	А	25 °C
Soldering Temperature ²	T _s	245	°C	
CGHV40180P Thermal Resistance, Junction to Case	R _{eJC}	0.87	°C/W	P _{DISS} = 150, 85 °C
Maximum Dissipated Power		150	W	P _{DISS} = 150, 85 °C
Case Operating Temperature ³	T _c	-40, +150	°C	

Notes:

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics¹(T _c = 25 °C)						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V _{DC}	$V_{DS} = 10 \text{ V}, I_{D} = 41.8 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V _{DC}	$V_{DS} = 50 \text{ V}, I_{D} = 1000 \text{ mA}$
Saturated Drain Current ²	I _{DS}	31.4	37.6	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR}	125	-	-	V _{DC}	$V_{GS} = -8 \text{ V}, I_{D} = 41.8 \text{ mA}$
RF Characteristics 3 (T _c = 25 °C, F ₀ = 90		s Otherwi	se Noted)			
Small Signal Gain	G _{ss}	22.8	24.0	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{in} = 10 \text{ dBm CW}$
Power Gain	G _P	18.4	19.8	ı	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{in} = 34 \text{ dBm CW}$
Power Output at Saturation	Роит	52.6	53.9	-	dBm	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{in} = 34 \text{ dBm CW}$
Drain Efficiency⁴	η	59	69	-	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{in} = 34 \text{ dBm CW}$
Output Mismatch Stress	VSWR	-	-	3:1	Ψ	No Damage at All Phase Angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{OUT} = 180 \text{ W CW}$
Dynamic Characteristics						
Input Capacitance	C _{GS}	-	57.8	-	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$
Output Capacitance	C _{DS}	-	13.7	-	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	C _{GD}	-	1.23	_	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$

¹ Current limit for long term, reliable operation.

² Refer to the Application Note on soldering.

³ See also, power de-rating curve on page 5.

 $^{^{\}scriptscriptstyle 1}\,\text{Measured}$ on wafer prior to packaging.

² Scaled from PCM data.

 $^{^{\}rm 3}$ Measurements are to be performed using the production test fixture AD-838292P-TB.

⁴ Drain efficiency = P_{OUT}/P_{DC} .

CGHV40180P Typical Performance

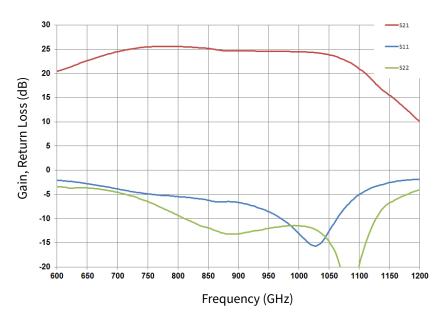


Figure 1. Small Signal Gain and Return Loss vs Frequency Measured in Application Circuit CGHV40180P $\rm V_{DD}$ = 50 V, $\rm I_{DQ}$ = 1.0 A



Figure 2. Output Power and Drain Efficiency vs Frequency CGHV40180P-TB, CW Operation, V_{DD} = 50 V, I_{DQ} = 1.0 A, @ P_{IN} 34 dBm

CGHV40180P Typical Performance

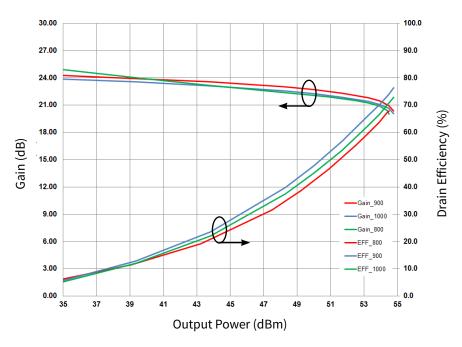


Figure 3. Gain and Drain EFF vs Frequency and Output Power CGHV40180P-TB, CW Operation, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 1.0 \text{ A}$

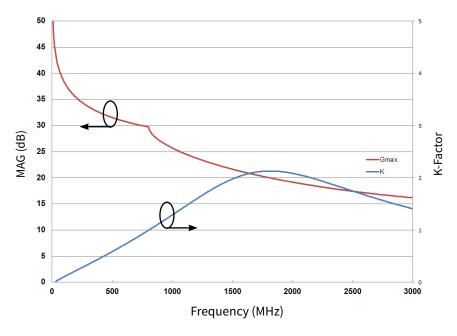
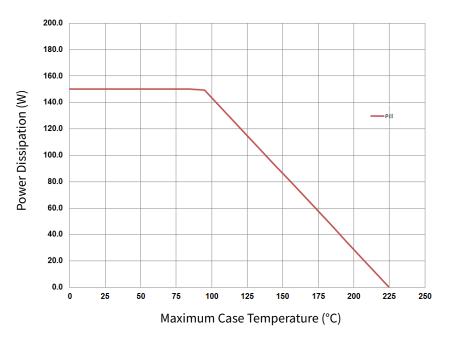
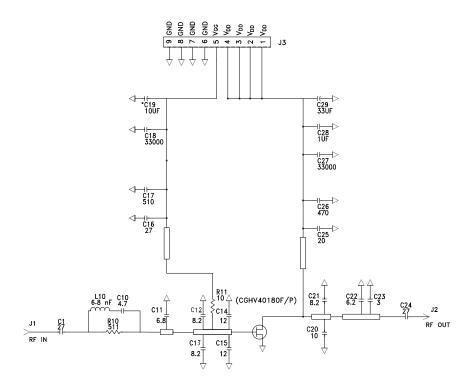
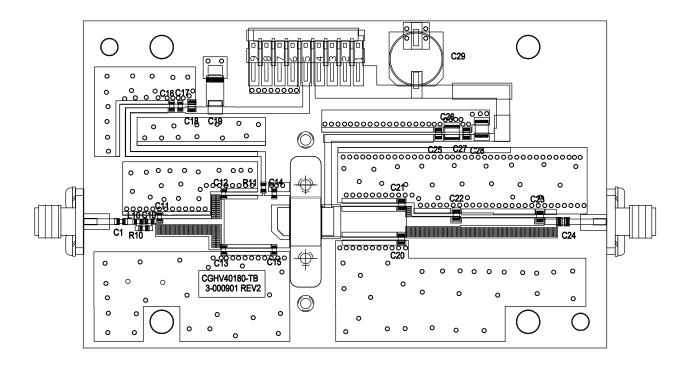


Figure 4. Simulated Maximum Available Gain and K-factor of the CGHV40180P $\rm V_{DD}$ = 50 V, $\rm I_{DQ}$ = 1.0 A

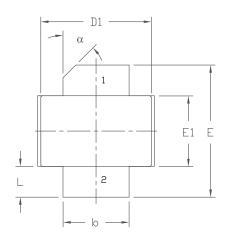
CGHV40180P Power Dissipation De-Rating Curve

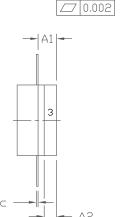



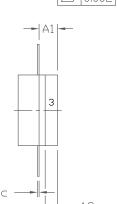

Figure 5. Transient Power Dissipation De-Rating Curve

CGHV40180P-AMP Application Circuit Schematic

CGHV40180P-AMP Application Circuit

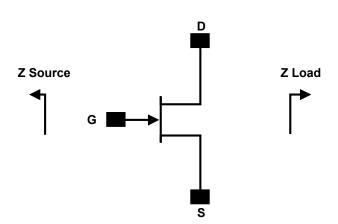

CGHV40180P-AMP Application Circuit Bill of Materials


Designator	Description	Qty
R11	RES, 1/16 W, 0603, 1%, 10.0 OHMS	1
R10	RES, 1/16 W, 0603, 1%, 511 OHMS	1
C29	CAP, 33 UF, 20%, G CASE	1
C28	CAP 1.0 UF, 100 V, ±10%, X7R, 1210	1
C17	CAP, 510 pF, NPO, 5%, 100 V, 0603	1
C26	CAP, 470 pF, NPO, 5%, 250 V, ATC800B	1
C19	CAP, 10 UF, 16 V TANTALUM, 2312	1
C14, C15	CAP, 12.0 pF, ±5%, 0603, ATC600S	2
C1, C16	CAP, 27 pF, ±5%, 0603, ATC600S	2
C10	CAP, 4.7 pF, ±0.1 pF, 0603, ATC600S	1
C11	CAP, 6.8 pF, ±0.25 pF, 0603, ATC600S	1
C12, C13	CAP, 8.2 pF, ±0.25 pF, 0603, ATC600S	2
C18, C27	CAP, 33000 pF, 0805, 100 V, X7R	2
C20	CAP, 10 pF, ±1%, 250 V, 0805, ATC600F	2
C25	CAP, 20 pF, ±5%, 250 V, 0805, ATC600F	1
C24	CAP, 27 pF, ±5%, 250 V, 0805, ATC600F	1
C23	CAP, 3.0 pF, ±0.1pF, 250 V, 0805, ATC600F	2
C22	CAP, 6.2 pF, ±0.1 pF, 250 V, 0805, ATC600F	1
C21	CAP, 8.2 pF, ±0.1 pF, 250 V, 0805 ATC600F	1
-	PCB ROGERS HTC6035, 0.020 THK, ER 3.60	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4 HOLE BLUNT POST	2
J3	HEADER RT>PLZ .1 CEN LK 9 POS	1
L10	INDUCTOR, CHIP, 6.8 nH, 5%, 0603 SMT, DIGIKEY 712-1432-1-ND	1
Q1	CGHV40180	1



Product Dimensions CGHV40180P (Package Type — 440206)

Α


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4, LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

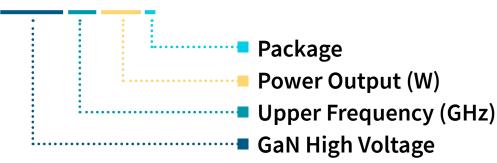
	INCHES		MILLIMETERS		NOTES
DIM	MIN	MAX	MIN	MAX	
Α	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
С	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
E	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2×
α	45° REF		45°	REF	

- PIN 1. GATE
 - 2. DRAIN
 - 3. SOURCE

Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
50	23.7 + J25.9	7.6 + J0.6
150	7.4 + J8.3	8.1 + J0.7
250	4.2 +J7.9	7.9 + J2.2
500	1.4 + J1.5	4.7 + J2.7
750	1.0 + J0.0	3.9 + J2.3
1000	0.7 + J1.1	4.0 + J1.8

- $^1\,\rm V_{DD}^{}$ = 50 V, $\rm I_{DQ}^{}$ = 1.0 A in the 440206 package.
- ² Optimized for power gain, P_{SAT} and drain efficiency.
- ³ When using this device at low frequency, series resistor should be used to maintain amplifier stability.


Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1 A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	2 (125 V to 250 V)	JEDEC JESD22 C101-C

Part Number System

CGHV40180P

Table 1.

Parameter	Value	Units
Upper Frequency ¹	4.0	GHz
Power Output	180	W
Package	Flange	-

Note

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

 $^{^{\}rm 1}$ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV40180P	GaN HEMT	Each	CEHNAO1808
CGHV40180P-AMP	Test Board with GaN HEMT (Pill) Installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.