

CGHV40100

100 W, DC - 3.0 GHz, 50 V, GaN HEMT

Description

The CGHV40100 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV40100, operating from a 50 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CGHV40100 ideal for linear and compressed amplifier circuits. The transistor is available in a 2-lead flange and pill package.

Package Types: 440193 & 440206 PN: CGHV40100F & CGHV40100P

Features

- Up to 3 GHz Operation
- · 100 W Typical Output Power
- 17.5 dB Small Signal Gain at 2.0 GHz
- Application Circuit for 0.5 2.5 GHz
- 55% Efficiency at P_{SAT}
- 50 V Operation

Typical Performance Over 500 MHz - 2.5 GHz ($T_c = 25^{\circ}C$), 50 V

Parameter	500 MHz	1.0 GHz	1.5 GHz	2.0 GHz	2.5 GHz	Units
Small Signal Gain	17.6	16.9	17.7	17.5	14.8	dB
Saturated Output Power	147	100	141	116	112	W
Drain Efficiency @ P _{SAT}	68	56	58	54	54	%
Input Return Loss	6	5.1	10.5	5.5	8.8	dB

RoHS

¹ Measured CW in the CGHV40100F-AMP application circuit.

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V_{DSS}	150	V	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	20.8	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	8.7	А	25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	$R_{\theta JC}$	1.62	9 <i>C</i> /M	0.500
Thermal Resistance, Junction to Case⁴	R _{θJC}	1.72	· °C/W	85°C
Case Operating Temperature⁵	T _C	-40, +150	°C	

Notes

Electrical Characteristics ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_D = 20.8 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V_{DC}	$V_{DS} = 50 \text{ V}, I_D = 0.6 \text{ A}$
Saturated Drain Current ²	I _{DS}	13.5	19.3	_	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V_{BR}	100	_	_	V_{DC}	$V_{GS} = -8 \text{ V}, I_D = 20.8 \text{ mA}$
RF Characteristics ² ($T_c = 25^{\circ}C$, F_c	= 2.0 GHz	unless o	therwise	noted)		
Small Signal Gain	G _{SS}	16	17.5	_	40	$V_{DD} = 50 \text{ V}, I_{DQ} = 0.6 \text{ A}$
Power Gain	G _P	_	11.0	_	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 0.6 \text{ A}, P_{OUT} = P_{SAT}$
Output Power at Saturation ⁴	P _{SAT}	100	116	_	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 0.6 \text{ A}$
Drain Efficiency ⁴	η	47	54	_	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 0.6 \text{ A}, P_{OUT} = P_{SAT}$
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, V _{DD} = 50 V, I _{DQ} = 0.6 A, P _{OUT} = 100 W CW
Dynamic Characteristics						
Input Capacitance	C _{GS}	_	29.3	_		
Output Capacitance	C _{DS}		7.3	_	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	C _{GD}	_	0.61	_		

Notes

 $^{^{\}rm 1}$ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 $^{^3}$ Measured for the CGHV40100P at $P_{DISS} = 83 \text{ W}$

⁴ Measured for the CGHV40100F at P_{DISS} = 83 W

⁵ See also, Power Derating Curve on Page 13

 $^{^{\}rm 1}\,{\rm Measured}$ on wafer prior to packaging

² Scaled from PCM data

³ Measured in CGHV40100-AMP

 $^{^4}$ P_{SAT} is defined as I_G = 0.208 mA

⁵ Includes package

CGHV40100 Typical Performance

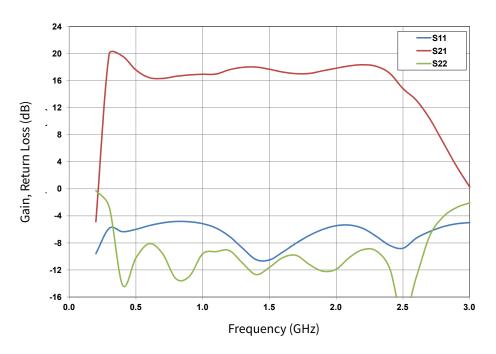
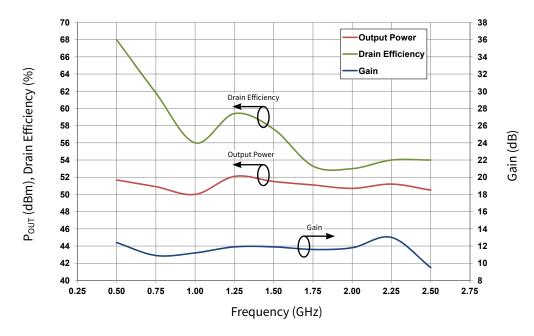
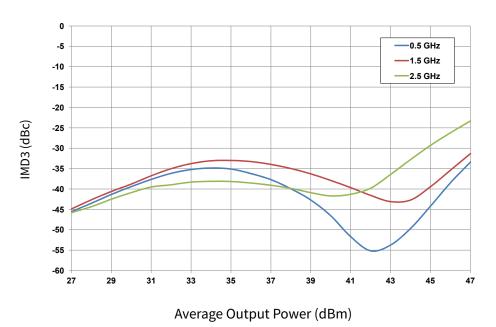
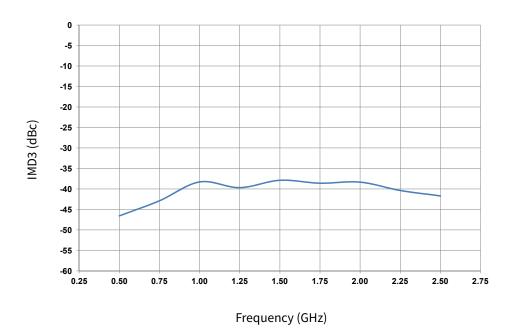


Figure 1. Small Signal Gain and Return Losses vs Frequency measured in application circuit CGHV40100-AMP $V_{DD} = 50 \text{ V}, I_{DO} = 600 \text{ mA}, T_{CASE} = 25^{\circ}\text{C}$


Figure 2. Output Power and Drain Efficiency vs Frequency $V_{DD} = 50 \text{ V}$, $I_{DQ} = 600 \text{ mA}$

CGHV40100 Typical Performance

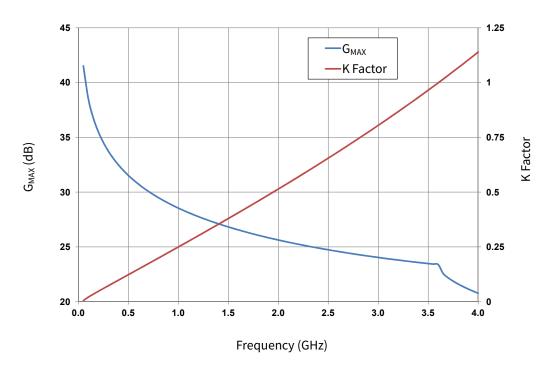
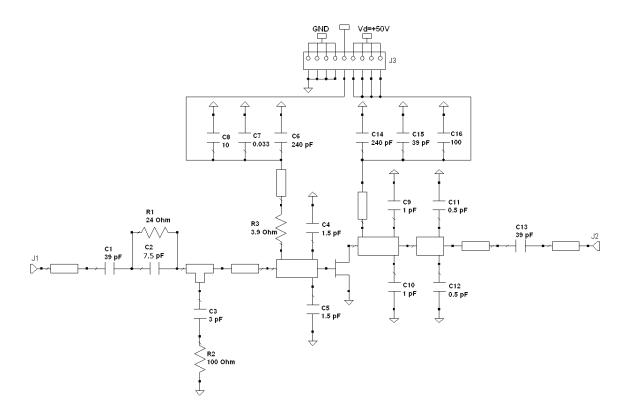
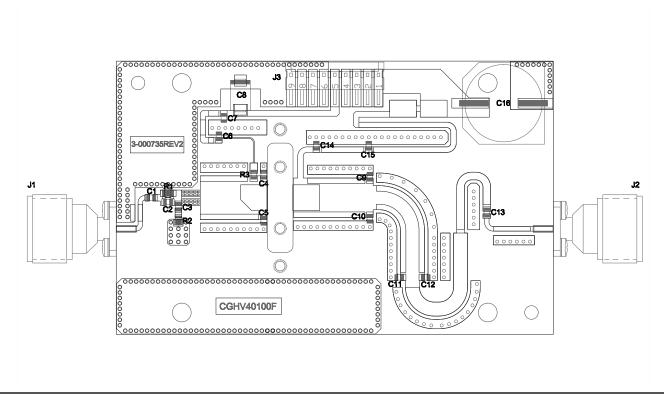

Figure 3. Third Order Intermodulation Distortion vs Average Output Power measured in Broadband Amplifier Circuit CGHV40100-AMP Spacing = 1 MHz, V_{DD} = 50 V, I_{DO} = 600 mA, T_{CASE} = 25°C

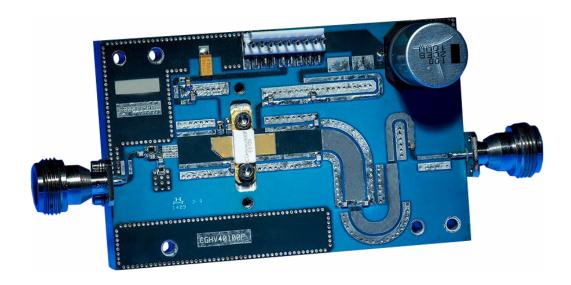
Figure 4. Third Order Intermodulation Distortion vs Frequency measured in Broadband Amplifier Circuit CGHV40100-AMP Spacing = 1 MHz, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 600 \text{ mA}$, $T_{CASE} = 25 ^{\circ}\text{C}$


CGHV40100 Typical Performance


Figure 5. G_{MAX} and K Factor vs Frequency $V_{DD} = 50 \text{ V}$, $I_{DQ} = 600 \text{ mA}$, $T_{CASE} = 25^{\circ}\text{C}$

CGHV40100-AMP Application Circuit Schematic

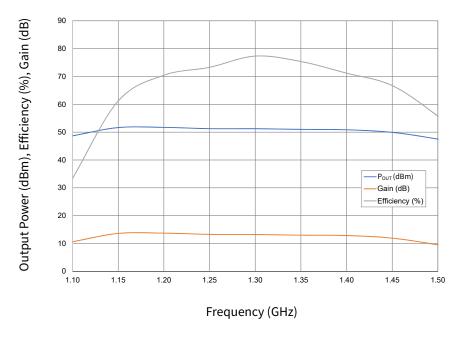
CGHV40100-AMP Application Circuit



CGHV40100-AMP Application Circuit Bill of Materials

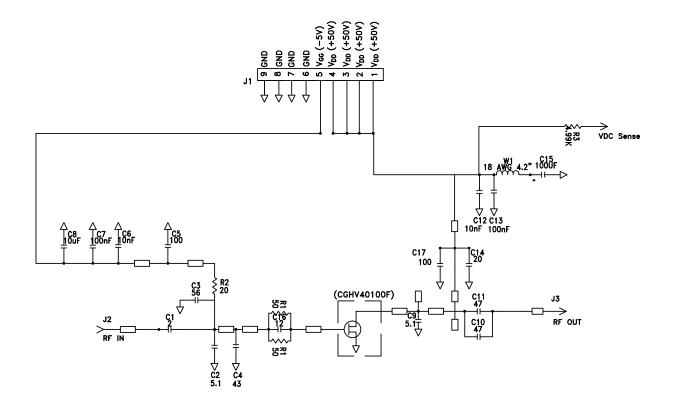
Designator	Description	Qty
C1, C13, C15	CAP, 39pF, ± 0.1pF, 250V, 0805, ATC600F	3
C2	CAP, 7.5pF, ± 0.1pF, 250 V, 0806, ATC600F	1
C3	CAP, 3pF ± 0.1pF, 250 V, 0805, ATC600F	1
C4, C5	CAP, 1.5pF, ± 0.1pF, 250 V, 0805, ATC600F	2
C7	CAP, 33000pF, 0805 100V, X7R	1
C6, C14	CAP, 240pF, ± 0.5pF, 250 V, 0805, ATC600F	2
C8	CAP, 10μF, 16V TANTALUM, 2312	1
C9, C10	CAP, 1pF, ± 0.1pF, 250 V, 0805, ATC600F	2
C11, C12	CAP, 0.5pF, ± 0.1pF, 250 V, 0805, ATC600F	2
C16	CAP, 100μF, 20%, 160 V, ELEC	1
R1	RES, 24 OHMS, IMS ND3-1005CS24R0G	1
R2	RED, 100 OHMS, IMS ND3-0805EW1000G	1
R3	RES, 3.9 OHMS, 0805	1
J1, J2	CONN, SMA, PANEL MOUNT JACK	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
-	BASEPLATE, CGH35120	1
_	PCB, RO4350B, 2.5" X 4" X 0.020", CGHV40100F	1

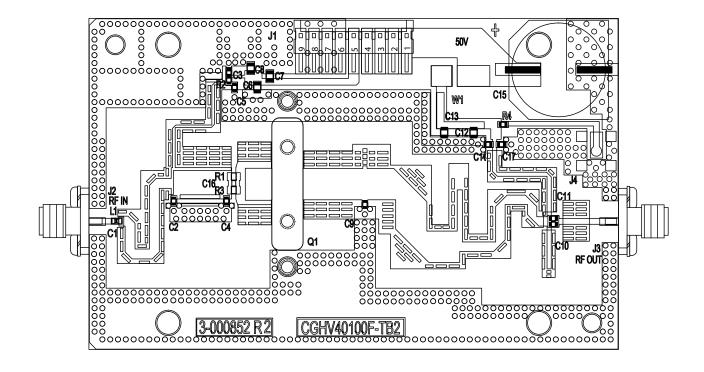
CGHV40100-AMP Demonstration Amplifier Circuit



Electrical Characteristics When Tested in CGHV40100F-AMP2

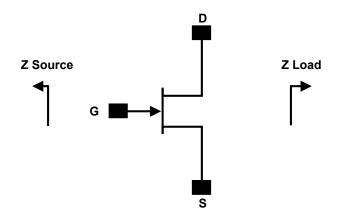
Characteristics	Symbol	Тур.	Max.	Units	Conditions	
DC Characteristics 1 (T _C = 25 $^{\circ}$ C, F0 = 1.2	- 1.4 GHz u	nless othe	rwise note	ed)		
Output Power	P _{OUT}	51		dBm	V = 50 V L = 10 m A D = 20 d D m	
Drain Efficiency	η	72		%	$V_{DD} = 50 \text{ V}, I_{DQ} = 10 \text{ mA}, P_{IN} = 38 \text{ dBm}$	
Output Mismatch Stress	VSWR		10:1	Y	No damage at all phase angles, V _{DD} = 50 V, I _{DQ} = 10 mA, P _{IN} = 38 dBm	


Typical Performance in Application Circuit CGHV40100F-AMP2


Figure 6. Output Power, Efficiency, and Gain vs. Frequency of the CGHV40100F Measured in Demonstration Amplifier Circuit CGHV40100F-AMP2 $V_{DD} = 50 \text{ V}$, $I_{DQ} = 10 \text{ mA}$, Pulse Width = $100 \mu s$, Duty Cycle = 10 %

CGHV40100-AMP2 Application Circuit Schematic

CGHV40100-AMP2 Application Circuit

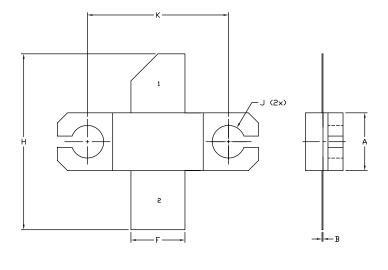


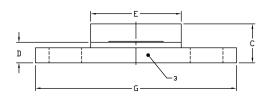
CGHV40100F-AMP2 Bill of Materials

Designator	Description	Qty
C1	CAP, 2.0pF, +/-0.1pF, 0603, ATC	1
R2	RES, 1/16W, 0603, 1%, 20 OHMS	1
R4	RES, 1/16W, 0603, 1%, 4.99K OHMS	1
R1, R3	RES, AIN, 50.0 OHM, +/- 5%, 0505, PtAg TERMINATION	1
C8	CAP, 10μF, 10%, 1206, 16V	1
C1, C5, C17	CAP, 100.0pF, +/-5%, 0603, ATC	3
C16	CAP, 12.0pF, +/-5%, 0603, ATC600	1
C14	CAP, 20.0pF, +/-5%, 0603, ATC600S	1
C4	CAP, 43pF, +/-5%pF, 0603, ATC	1
C10, C11	CAP, 47pF, +/-5%pF, 0603, ATC	2
C3	CAP, 56pF +/- 5%, 0603 , ATC600S	1
C2, C9	CAP, 5.1pF, +/-0.05pF, 0603, 600S	2
C6, C12	CAP,0805, 100V, TEMP STBL, 1000pF	2
C7, C13	CAP, 10000PF, +/-10%, 0805, X7R, 100V, TEMP STBL	2
-	PCB, RO4350, 0.020 THK, CGHV40100F-TB2 1.2-1.4GHz RADAR	1
-	BASEPLATE, AL, 4.00 X 2.50 X 0.49 FOR THRU HOLE CAPACITORS	1
-	2-56 SOC HD SCREW 1/4 SS	4
-	#2 SPLIT LOCKWASHER SS	4
J2, J3	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	2
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Aµ PLATED	1
J1	HEADER RT>PLZ .1CEN LK 9POS	1
W1	WIRE, BLACK, 18 AWG, EXTRUDED TFE TEFLON	1
L1	INDUCTOR, CHIP, 2.2nH, 0603, SMT	1
C2	CAP, 6.8pF, +/- 0.25pF, 0603, ATC	1
C15	CAP, 100μF, +/-20%, 100V, ALUM ELEC	1
Q1	Transistor CGHV40100F	1

Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
500	0.43 + j5.25	8.83 + j0.85
750	0.40 + j2.62	10.78 + j2.50
1000	0.30 + j1.31	9.06 + 4.23
1250	0.30 + j0.44	7.40 + j3.85
1500	0.30 - j0.44	6.39 + j3.44
1750	0.25 - j0.87	4.41 + j3.03
2000	0.25 - j1.31	3.68 + j2.17
2250	0.25 - j2.18	3.42 + j2.17
2500	0.26 - j2.62	2.65 + j1.74


Electrostatic Discharge (ESD) Classifications


Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1B	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	2	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

 $^{^1\,\}rm V_{DD}$ = 50 V, $\rm I_{DQ}$ = 600 mA in the 440193 package 2 Optimized for power gain, $\rm P_{SAT}$ and PAE

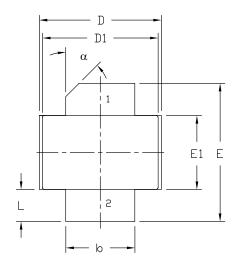
Product Dimensions CGHV40100F (Package Type — 440193)

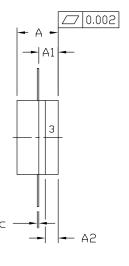
NOTES

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.


4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.


5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.225	0.235	5.72	5.97		
В	0.004	0.006	0.10	0.15		
С	0.145	0.165	3.68	4.19		
D	0.077	0.087	1.96	2.21		
E	0.355	0.365	9.02	9.27		
F	0.210	0.220	5.33	5.59		
G	0.795	0.805	20.19	20.45		
Н	0.670	0.730	17.02	18.54		
J	ø.	130	3.3	30		
L L	0.5	62	14	28		

PIN 1. GATE PIN 2. DRAIN PIN 3. STURCE

Product Dimensions CGHV40100P (Package Type — 440206)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

	INC	HES	MILLIM	IETERS	NOTES
DIM	MIN	MAX	MIN	MAX	
Α	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
С	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
E	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2×
α	45° REF		45°	REF	

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE

CGHV40100 Power Dissipation De-rating Curve

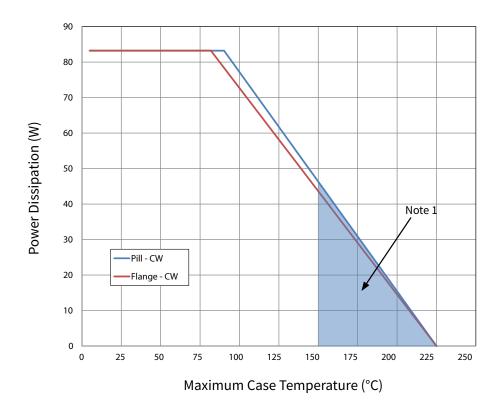


Figure 7. Transient Power Dissipation De-Rating Curve

Note

¹ Area exceeds Maximum Case Temperature (See Page 2).

Part Number System

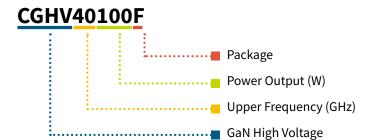


Table 1.

Parameter	Value	Units
Upper Frequency ¹	4.0	GHz
Power Output	100	W
Package	Flange	_

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV40100F	GaN HEMT	Each	cory solor
CGHV40100P	GaN HEMT	Each	CGHN40100P
CGHV40100F-AMP	Test board with GaN HEMT (CGHV40100F) installed, operating from 0.5 - 2.5 GHz for communications or ISM applications.	Each	
CGHV40100F-AMP2	Test board with GaN HEMT (CGHV40100F) installed, operating from 1.2 - 1.4 GHz for L-Band Radar.	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.