

CGHV40050

50 W, DC - 4.0 GHz, 50 V, GaN HEMT

Description

The CGHV40050 is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV40050, operating from a 50 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications up to 4 GHz. The reference HPA design in the datasheet operates from 800 MHz to 2 GHz operation instantaneously. It is a demonstration amplifier to showcase the CGHV40050's high efficiency, high gain and wide bandwidth capabilities. The device can be used for a range of applications from narrow band UHF, L and S Band as well as multi-octave bandwidth amplifiers up to 4 GHz. The transistor is available in a 2-lead flange and pill package.

Package Types: 440193 & 440206 PNs: CGHV40050F & CGHV40050P

Typical Performance Over 800 MHz - 2.0 GHz ($T_c = 25^{\circ}$ C), 50 V

Parameter	800 MHz	1.2 GHz	1.4 GHz	1.8 GHz	2.0 GHz	Units
Small Signal Gain	17.6	16.9	17.7	17.5	14.8	dB
Saturated Output Power	65	70	63	77	60	W
Drain Efficiency @ P _{SAT}	63	63	60	53	52	%
Input Return Loss	5	5.5	4.2	8	5	dB

Note: Measured CW in the CGHV40050F-AMP application circuit.

Features

- Up to 4 GHz Operation
- 77 W Typical Output Power
- 17.5 dB Small Signal Gain at 1.8 GHz
- Application Circuit for 0.8 2.0 GHz
- 53% Efficiency at P_{SAT}
- 50 V Operation

Large Signal Models Available for ADS and MWO

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	150	V	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225	٦	
Maximum Forward Gate Current	I _{GMAX}	10.4	mA	artic
Maximum Drain Current ¹	I _{DMAX}	6.3	А	- 25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³		3.04	06/14/	or0c
Thermal Resistance, Junction to Case⁴	R _{θJC}	3.11	°C/W	85°C
Case Operating Temperature⁵	T _c	-40, +80	°C	30 Seconds

Notoc

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V	V _{DS} = 10 V, I _D = 10.4 mA
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	_	V _{DC}	$V_{DS} = 50 \text{ V}, I_{D} = 0.3 \text{ A}$
Saturated Drain Current ²	I _{DS}	6.8	9.7	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR}	100	_	_	V _{DC}	$V_{GS} = -8 \text{ V, } I_D = 10.4 \text{ mA}$
RF Characteristics ³ ($T_c = 25^{\circ}C$, $F_0 = 1$	L.8 GHz unl	ess othe	rwise no	ted)		
Small Signal Gain	Gss	17.5	19	_	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 0.3 \text{ A}$
Power Gain	G₽	ı	15.5	_	иь	$V_{DD} = 50 \text{ V}, I_{DQ} = 0.3 \text{ A}, P_{OUT} = P_{SAT}$
Output Power at Saturation ⁴	P _{SAT}	70	77	_	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 0.3 \text{ A}$
Drain Efficiency	η	48	53	_	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 0.3 \text{ A}, P_{OUT} = P_{SAT}$
Output Mismatch Stress	VSWR	ı	_	10:1	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 0.3 \text{ A}$, $P_{OUT} = 50 \text{ W}$ CW
Dynamic Characteristics						
Input Capacitance	C _{GS}	_	16	_		
Output Capacitance	C _{DS}		5	_	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	$C_{\sf GD}$	_	0.3	_		

Notes

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 $^{^{3}}$ Measured for the CGHV40050P at P_{DISS} = 41.6 W

 $^{^{\}rm 4}$ Measured for the CGHV40050F at P $_{\rm DISS}$ = 41.6 W

 $^{^{\}scriptscriptstyle 5}$ See also, Power Derating Curve on Page 7

 $^{^{\}scriptscriptstyle 1}\,\text{Measured}$ on wafer prior to packaging.

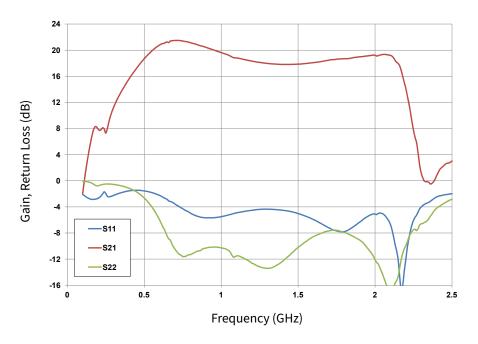
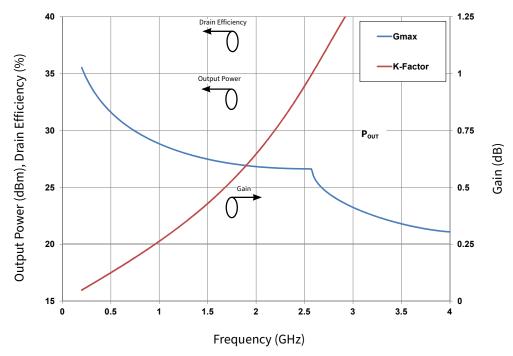
² Scaled from PCM data

³ Measured in CGHV40050-AMP

 $^{^4}$ P_{SAT} is defined as I_G= 1 mA

⁵ Includes package

CGHV40050 Typical Performance

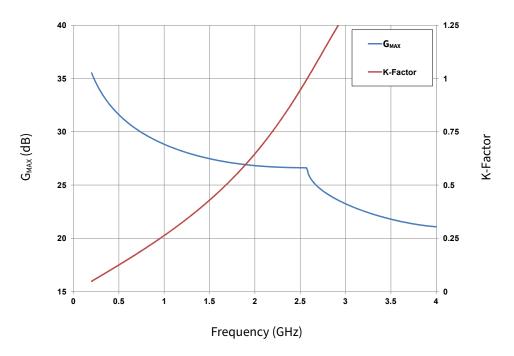
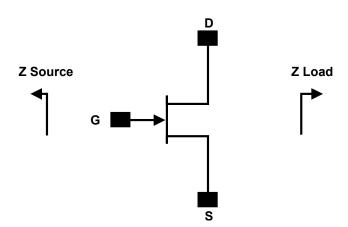

Figure 1. Small Signal Gain and Return Losses vs Frequency of the CGHV40050 in the application circuit CGHV40050-AMP $V_{DD}=50~V,~I_{DQ}=300~mA,~T_{CASE}=25^{\circ}C$

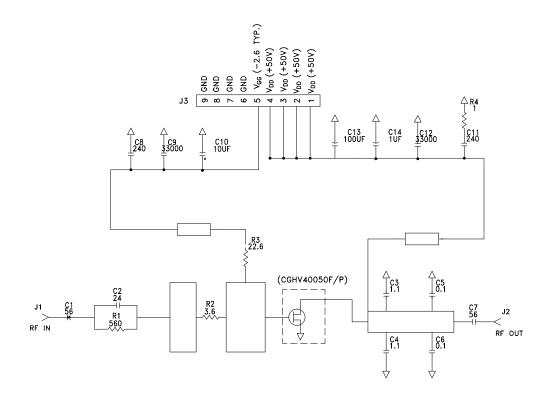
Figure 2. Gain, Output Power and Drain Efficiency vs Frequency of the CGHV40050 measured in Broadband Amplifier Circuit CGHV40050-AMP $V_{DD}=50~V,~I_{DQ}=300~mA,~T_{CASE}=25^{\circ}C$



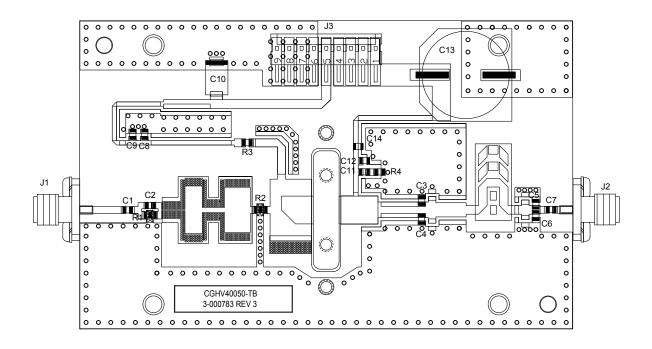
CGHV40050 Typical Performance

Figure 3. G_{MAX} and K-Factor vs Frequency $V_{DD} = 50V$, $I_{DQ} = 300$ mA, $T_{CASE} = 25$ °C

Source and Load Impedances

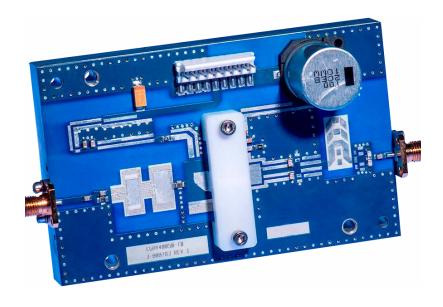

Frequency (MHz)	Z Source	Z Load
500	5.69+j7.82	21.47+j10.28
1000	3.21+j3.48	11.72+j10.50
2000	3.2-j1.74	3.84+j7.07
3000	3.23-j5.23	5.58+j3.02
4000	2.75-j10.6	4.65-j0.74

Note: V_{DD} = 50V, I_{DQ} = 300 mA in the 440193 package


https://www.macom.com/support

CGHV40050-AMP Application Circuit Schematic

CGHV40050-AMP Application Circuit



CGHV40050-AMP Application Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 560 Ohms, 0805, HIGH POWER SMT	1
R2	RES, 3.6 Ohms, 1005, HIGH POWER SMT	1
R3	RES, SMT, 0805, 22 OHM	1
R4	RES, SMT, 0805, 1 OHM	1
C1, C7	CAP, 56pF +/- 5%, 250V, 0805, ATC 600F	3
C2	CAP, 24pF +/- 5%, 250V, 0805, ATC 600F	1
C3, C4	CAP, 1.1pF, +/-0.1pF, 250V, 0805, ATC600F	2
C5, C6	CAP, 0.1pF +/- 0.05pF, 0805, ATC 600F	2
C8, C11	CAP, 240pF, +/-5%, 0805, ATC600F	2
C9, C12	CAP, 33000pF, 0805, 100V, X7R	2
C10	CAP, 10μF, 16V, TANTALUM	1
C13	CAP, 100μF, 80V, ELECTROLYTIC, CAN	1
C14	CAP, 1μF, 0805, 100V, X7S	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
-	BASEPLATE, CGH35120	1
-	PCB, RO4350B, 2.5"x4"x0.020", CGHV40050F	1

CGHV40050-AMP Demonstration Amplifier Circuit

CGHV40050 Power Dissipation De-rating Curve

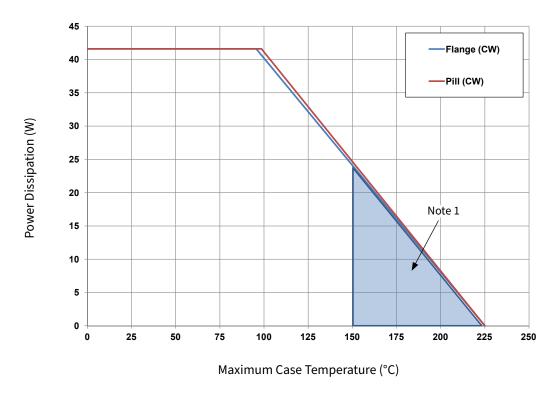


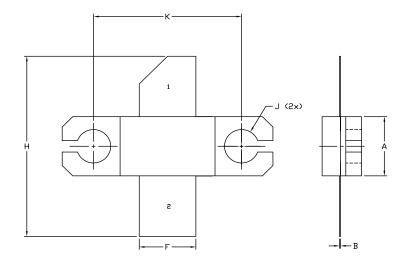
Figure 4. Transient Power Dissipation De-Rating Curve

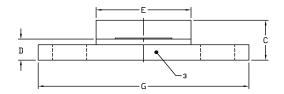
Note:

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

 $^{^{\}rm 1}{\rm Area}$ exceeds Maximum Case Operating Temperature (See Page 2).


Typical S-Parameters (Small Signal, $V_{DS} = 50 \text{ V}$, $I_{DQ} = 300 \text{ mA}$, magnitude / angle)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.92	-161.97	13.79	79.27	0.01	-5.56	0.44	-142.42
600 MHz	0.92	-165.42	11.38	74.02	0.01	-9.73	0.46	-143.34
700 MHz	0.92	-168.02	9.62	69.31	0.01	-13.32	0.49	-144.16
800 MHz	0.93	-170.08	8.29	64.99	0.01	-16.49	0.52	-145.04
900 MHz	0.93	-171.8	7.24	60.98	0.009	-19.32	0.55	-146.01
1.0 GHz	0.93	-173.27	6.4	57.23	0.009	-21.83	0.58	-147.07
1.1 GHz	0.93	-174.58	5.7	53.71	0.009	-24.07	0.61	-148.21
1.2 GHz	0.94	-175.77	5.13	50.38	0.008	-26.05	0.63	-149.4
1.3 GHz	0.94	-176.86	4.64	47.24	0.008	-27.77	0.65	-150.62
1.4 GHz	0.94	-177.89	4.23	44.25	0.007	-29.25	0.67	-151.85
1.5 GHz	0.94	-178.87	3.87	41.42	0.007	-30.48	0.69	-153.09
1.6 GHz	0.94	-179.81	3.56	38.72	0.007	-31.46	0.71	-154.33
1.7 GHz	0.95	179.28	3.3	36.14	0.006	-32.19	0.73	-155.54
1.8 GHz	0.95	178.4	3.06	33.68	0.006	-32.66	0.74	-156.74
1.9 GHz	0.95	177.53	2.85	31.32	0.006	-32.85	0.76	-157.91
2.0 GHz	0.95	176.67	2.67	29.06	0.005	-32.75	0.77	-159.06
2.1 GHz	0.95	175.82	2.51	26.88	0.005	-32.33	0.78	-160.18
2.2 GHz	0.95	174.97	2.37	24.78	0.005	-31.57	0.79	-161.28
2.3 GHz	0.95	174.13	2.24	22.75	0.005	-30.43	0.8	-162.34
2.4 GHz	0.96	173.28	2.12	20.78	0.004	-28.87	0.81	-163.39
2.5 GHz	0.96	172.43	2.02	18.87	0.004	-26.86	0.82	-164.4
2.6 GHz	0.96	171.57	1.93	17.02	0.004	-24.35	0.82	-165.4
2.7 GHz	0.96	170.7	1.85	15.2	0.004	-21.31	0.83	-166.37
2.8 GHz	0.96	169.82	1.77	13.43	0.003	-17.72	0.84	-167.32
2.9 GHz	0.96	168.92	1.71	11.69	0.003	-13.6	0.84	-168.25
3.0 GHz	0.96	168.01	1.65	9.98	0.003	-8.98	0.85	-169.17
3.2 GHz	0.96	166.12	1.55	6.62	0.003	1.31	0.86	-170.95
3.4 GHz	0.96	164.13	1.47	3.33	0.003	11.88	0.86	-172.69
3.6 GHz	0.96	162	1.41	0.06	0.004	21.35	0.87	-174.4
3.8 GHz	0.95	159.72	1.36	-3.22	0.004	28.89	0.87	-176.09
4.0 GHz	0.95	157.25	1.33	-6.55	0.005	34.35	0.88	-177.76

To download the s-parameters in s2p format, go to the CGHV40050 Product Page.

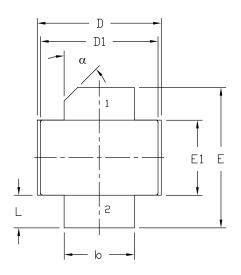
Product Dimensions CGHV40050F (Package Type — 440193)

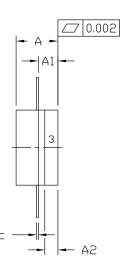
NOTES

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.


4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.


5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.225	0.235	5.72	5.97	
В	0.004	0.006	0.10	0.15	
С	0.145	0.165	3.68	4.19	
D	0.077	0.087	1.96	2.21	
Ε	0.355	0.365	9.02	9.27	
F	0.210	0.220	5.33	5.59	
G	0.795	0.805	20.19	20.45	
Н	0.670	0.730	17.02	18.54	
J	ø.	130	3.30		
k	0.5	62	14.	28	

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGHV40050P (Package Type — 440206)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M $-\,$ 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

	INCHES		MILLIM	NOTES	
DIM	MIN	MAX	MIN	MAX	
Α	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
C	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
E	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
ш	0.085	0.115	2.16	2.92	2×
α	45*	REF	45°	45° REF	

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV40050F	GaN HEMT	Each	CGHVA0050F
CGHV40050P	GaN HEMT	Each	CGHV40050P
CGHV40050F-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.