

CGHV37400F

400 W, 3.5 - 3.7 GHz, 50-Ohm Input/Output Matched, GaN HEMT for S-Band Radar Systems

Description

The CGHV37400F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV37400F ideal for 3.5 - 3.7 GHz S-Band radar amplifier applications. The transistor is matched to 50-ohms on the input and 50-ohms on the output. The CGHV35400 is based on the high power density 50 V, 0.4 µm GaN-on-Silicon Carbide (SiC) foundry process. The transistor is supplied in a ceramic metal flange package, type 440217.

Package Type: 440217 PN: CGHV37400F

Typical Performance Over 3.5-3.7 GHz ($T_c = 25^{\circ}$ C) of Demonstration Amplifier

Parameter	3.5 GHz	3.6 GHz	3.7 GHz	Units
Output Power	555	560	555	W
Gain	11.4	11.5	11.4	dB
Drain Efficiency	55	555	55	%

Note: Measured in the CGHV37400F-AMP application circuit, under 100 µs pulse width, 10% duty cycle, P_{IN} = 46 dBm

Features

- 3.3 3.8 GHz Operation
- 525 W Typical Output Power
- 11.5 dB Power Gain
- 55% Typical Drain Efficiency
- 50 Ohm Internally Matched
- <0.3 dB Pulsed Amplitude Droop

RoHS compliant

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions	
Pulse Width	PW	100	μs		
Duty Cycle	DC	10	%		
Drain-Source Voltage	$V_{\scriptscriptstyle DSS}$	150	V	35°C	
Gate-to-Source Voltage	V_{GS}	-10, +2	V	25°C	
Storage Temperature	T_{STG}	-65, +150	°C		
Operating Junction Temperature	TJ	225			
Maximum Forward Gate Current	I _{GMAX}	80	mA	− 25°C	
Maximum Drain Current ¹	I _{DMAX}	24	A	25 C	
Soldering Temperature ²	Ts	245	°C		
Screw Torque	τ	40	in-oz		
Pulsed Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.22	°C/W	100 μsec, 10%, 85°C , P _{DISS} = 418 W	
Case Operating Temperature	T _c	-40, +125	°C		

Notes:

Electrical Characteristics

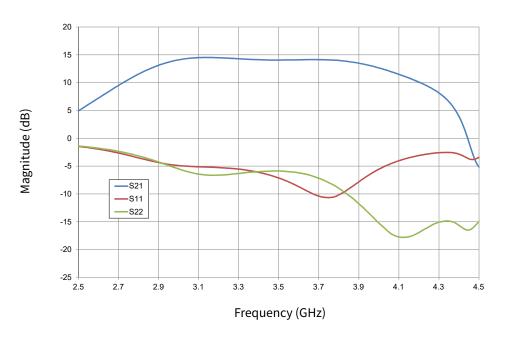
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹ (T _c = 25°C)						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	.,	$V_{DS} = 10 \text{ V}, I_{D} = 83.6 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	_	V _{DC}	$V_{DS} = 50 \text{ V}, I_{D} = 1.0 \text{ A}$
Saturated Drain Current ²	I _{DS}	54.3	77.7	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V_{BR}	125	_	_	V _{DC}	V _{GS} = -8 V, I _D = 83.6 mA
RF Characteristics ³ (T _c = 25°C,	$F_0 = 3.5 - 3.$	7 GHz unl	ess other	wise note	d)	
Output Power at 3.5 GHz	P _{OUT1}	400	F2F	-	w	
Output Power at 3.7 GHz	P _{OUT2}	400	525	_] W	V 50V L 1000 A B 46 IB
Drain Efficiency at 3.5 GHz	DE ₁	F0		_	0/	$V_{DD} = 50 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = 46 \text{ dBm}$
Drain Efficiency at 3.7 GHz	DE ₂	50	55	_	%	
Small Signal Gain	S21	11.75	14	-		
Input Return Loss	S11	_	-9		15	$V_{DD} = 50 \text{ V}, I_{DQ} = 1000 \text{ mA}, P_{IN} = -10 \text{ dBm}$
Output Return Loss	S22	_	-6	-4	dB	
Amplitude Droop	D	_	-0.3	_	1	V _{DD} = 50 V, I _{DQ} = 1000 mA, P _{IN} = 46 dBm
Output Stress Match ⁴	VSWR	_	5:1	_	Ψ	No damage at all phase angles, V_{DD} = 50 V, I_{DQ} = 1000 mA, P_{IN} = 46 dBm Pulsed

Notes:

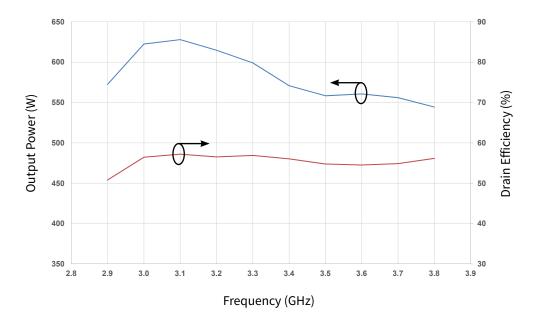
¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

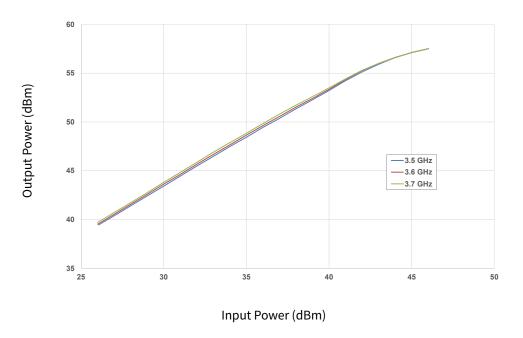
¹ Measured on wafer prior to packaging

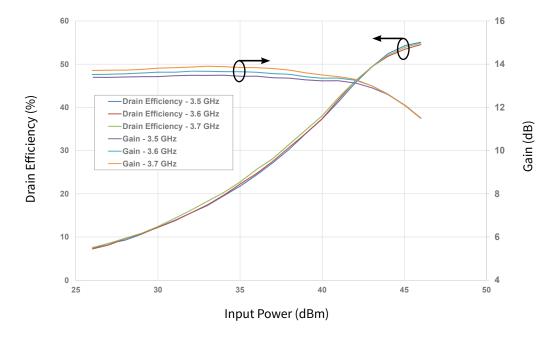

² Scaled from PCM data

 $^{^3\,}$ Measured in CGHV37400F-AMP. Pulse Width = 100 $\mu s,\, Duty\, Cycle$ = 10%


⁴ The device is not recommended for 5:1 VSWR applications below 3.3 GHz

Typical Performance


Figure 1. Typical Small Signal Gain and Return Losses vs Frequency $V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}$

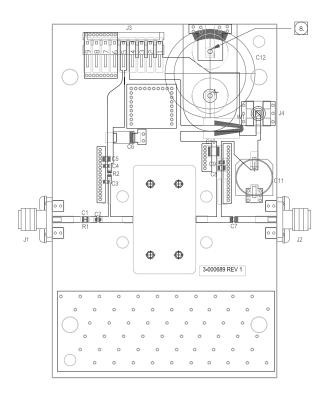

Figure 2. CGHV37400F Output Power and Drain Efficiency vs Frequency V_{DD} = 50 V, I_{DQ} = 1.0 A, P_{IN} = 46 dBm, Pulse Width = 100 μ s, Duty Cycle = 10%, T_{CASE} = 25°C

Typical Performance

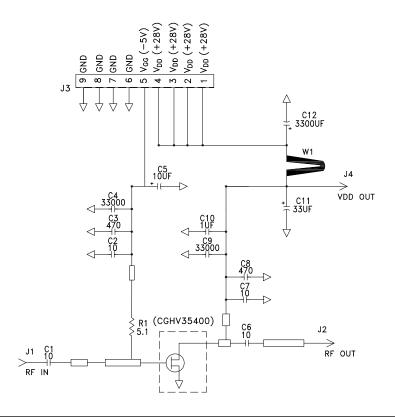
Figure 3. Typical Output Power vs Input Power of the CGHV37400F V_{DD} = 50 V, I_{DQ} = 1.0 A, Pulse Width = 100 μ s, Duty Cycle = 10%, T_{CASE} = 25°C

Figure 4. CGHV37400F Drain Efficiency and Gain vs Input Power V_{DD} = 50 V, I_{DQ} = 1.0 A, Pulse Width = 100 μ s, Duty Cycle = 10%, T_{CASE} = 25°C

CGHV37400F-AMP Application Circuit Bill of Materials

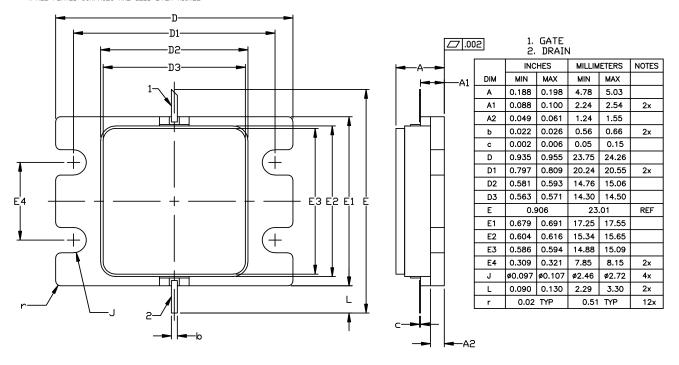

Designator	Description	Qty
R1	RES, 511, OHM, +/- 1%, 1/16W, 0603	1
R2	RES, 5.1, OHM, +/- 1%, 1/16W, 0603	1
C1	CAP, 6.8pF, +/-0.25%, 250V, 0603	1
C2, C7, C8	CAP, 10.0pF, +/-1%, 250V, 0805	3
C3	CAP, 10.0pF, +/-5%, 250V, 0603	1
C4, C9	CAP, 470pF, 5%, 100V, 0603, X	2
C5	CAP, 33000pF, 0805, 100V, X7R	1
C6	CAP, 10μF 16V TANTALUM	1
C10	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
C11	CAP, 33μF, 20%, G CASE	1
C12	CAP, 3300μF, +/-20%, 100V, ELECTROLYTIC	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER, RT>PLZ, 0.1CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK, SMD	1
W1	CABLE, 18 AWG, 4.2	1
-	PCB, RO4350, 2.5 X 4.0 X 0.030	1
Q1	CGHV37400F	1

Electrostatic Discharge (ESD) Classifications

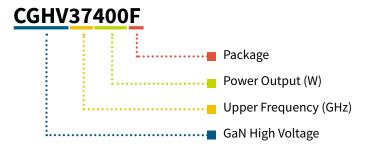

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

CGHV37400F-AMP Application Circuit Outline

CGHV37400F-AMP Application Circuit Schematic



Product Dimensions CGHV37400F (Package Type - 440217)


NOTES: (UNLESS OTHERWISE SPECIFIED)

- 1. INTERPRET DRAWING IN ACCURDANCE WITH ANSI Y14.5M-2009
- 2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF .020 BEYOND EDGE OF LID
- 3. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION
- 4. ALL PLATED SURFACES ARE GOLD OVER NICKEL

Part Number System

Table 1.

Parameter	Value	Units
Upper Frequency ¹	3.7	GHz
Power Output	400	W
Package	Flange	_

Note:

Table 2.

Parameter	Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
K	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV37400F	GaN HEMT	Each	
CGHV37400F-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.