

CGHV35400F

400 W, 2.9 - 3.5 GHz, 50-Ohm Input/Output Matched, GaN HEMT for S-Band Radar Systems

Description

The CGHV35400F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain, and wide bandwidth capabilities, which makes the CGHV35400F ideal for 2.9 - 3.5 GHz S-Band radar amplifier applications. The transistor is matched to 50-ohms on the input and 50ohms on the output. The CGHV35400 is based on the high power density 50 V, 0.4 μm GaN on silicon carbide (SiC) foundry process. The transistor is supplied in a ceramic/metal flange package, type 440225.

Package Types: 440225 PN's: CGHV35400F

Features

- 2.9 3.5 GHz operation
- 500 W typical output power
- 11 dB power gain
- 70% typical drain efficiency
- 50 Ohm internally matched
- <0.3 dB pulsed amplitude droop

Typical Performance Over 2.9-3.5 GHz ($T_c = 25$ °C) of Demonstration Amplifier

Parameter	2.9 GHz	3.2 GHz	3.5 GHz	Units
Output Power	500	535	480	W
Gain	11.0	11.3	10.8	dB
Drain Efficiency	74	69	64	%

Measured in the CGHV35400F-AMP application circuit, under 500 μs pulse width, 10% duty cycle, P_{IN} = 46 dBm.

RoHS compliant

Absolute Maximum Ratings (Not Simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Pulse Width	PW	500	μs	
Duty Cycle	DC	10	%	
Drain-Source Voltage	V _{DSS}	150	Volts	25 °C
Gate-to-Source Voltage	V _{GS}	-10, +2	Volts	25 °C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Maximum Forward Gate Current	I _{GMAX}	80	mA	25 °C
Maximum Drain Current ¹	I _{DMAX}	24	А	25 °C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Pulsed Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.22	°C/W	100 μsec, 10%, 85 °C , P _{DISS} = 418 W
Pulsed Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.30	°C/W	500 μsec, 10%, 85 °C , P _{DISS} = 418 W
Case Operating Temperature	T _c	-40, +125	°C	

Notes:

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹ (T _c = 25 °C)						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V _{DC}	$V_{DS} = 10 \text{ V}, I_{D} = 83.6 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V _{DC}	$V_{DS} = 50 \text{ V, I}_{D} = 0.5 \text{ A}$
Saturated Drain Current ²	I _{DS}	62.7	75.5	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR}	125	-	-	V _{DC}	V _{GS} = -8 V, I _D = 83.6 mA

Notes:

¹ Current limit for long term, reliable operation.

² Refer to the Application Note on soldering

 $^{^{\}mbox{\tiny 1}}$ Measured on wafer prior to packaging.

² Scaled from PCM data.

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
RF Characteristics³ (T _c = 25 °C, F ₀ = 2.9 - 3.5 GHz Unless Otherwise Noted)							
Output Power at 2.9 GHz	P _{out1}	445	500	-	W	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Output Power at 3.2 GHz	P _{OUT2}	475	535	-	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$	
Output Power at 3.5 GHz	Роитз	410	480	-	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$	
Gain at 2.9 GHz	G _{P1}	10.5	11	-	dB	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Gain at 3.2 GHz	G _{P2}	10.75	11.3	-	dB	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Gain at 3.5 GHz	G _{P3}	10.1	10.8	-	dB	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Drain Efficiency at 2.9 GHz	D _{E1}	60	70	-	%	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Drain Efficiency at 3.2 GHz	D _{E2}	60	70	-	%	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Drain Efficiency at 3.5 GHz	D _{E3}	54	64	-	%	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm	
Small Signal Gain	S21	10.5	12	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = -10 \text{ dBm}$	
Input Return Loss	S11	-	-8	-3.0	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = -10 \text{ dBm}$	
Output Return Loss	S22	-	-8	-4.0	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = -10 \text{ dBm}$	
Amplitude Droop	D	-	-0.3	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$	
Output Stress Match	VSWR	-	5:1	-	Ψ	No Damage at All Phase Angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm Pulsed}$	

Note:

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1 A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

 $^{^3}$ Measured in CGHV35400F-AMP. Pulse width = 500 μS , duty cycle = 10%.

Typical Performance

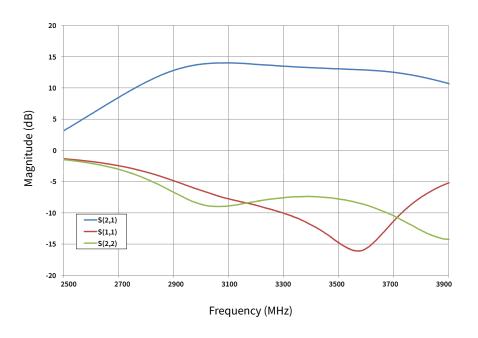


Figure 1. CGHV35400F Typical S Parameters V_{DD} = 50 V, I_{DQ} = 0.5 A

Figure 2. CGHV35400F P_{OUT} and Drain Efficiency vs Frequency at T_{case} = 25 °C V_{DD} = 50 V, I_{DQ} = 0.5 A, P_{IN} = 46 dBm, Pulse Width = 500 μ s, Duty Cycle = 10%

Typical Performance

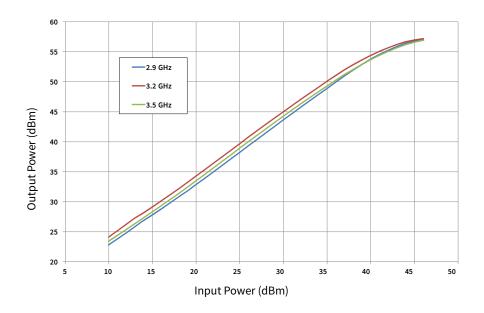
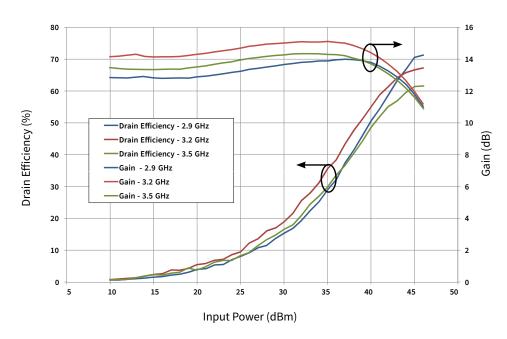
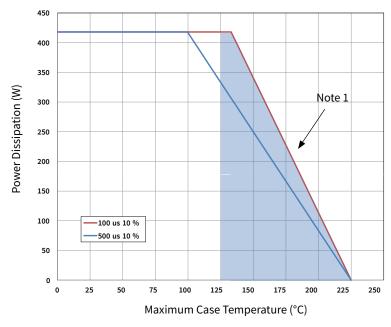


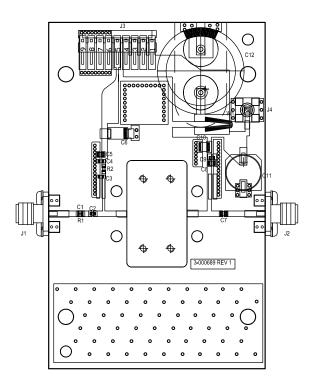
Figure 3. CGHV35400F Output Power vs Input Power V $_{DD}$ = 50 V, I $_{DQ}$ = 500 mA, Pulse Width = 500 μs , Duty = 10%, T $_{case}$ = 25 °C




Figure 4. CGHV35400F Drain Efficiency & Gain vs Input Power V_{DD} = 50 V, I_{DQ} = 500 mA, Pulse Width = 500 μ s, Duty Cycle = 10%, T_{case} = 25 °C

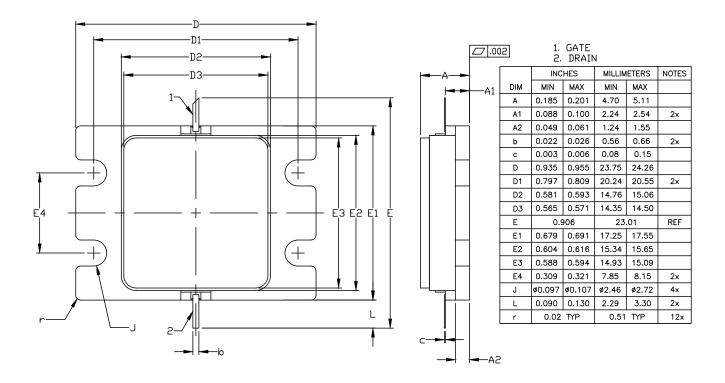
CGHV35400F-AMP Application Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 511, OHM, +/- 1%, 1/16 W, 0603	1
R2	RES, 5.1, OHM, +/- 1%, 1/16 W, 0603	1
C1	CAP, 6.8 pF, +/-0.25%, 250 V, 0603	1
C2, C7, C8	CAP, 10.0 pF, +/-1%, 250 V, 0805	3
С3	CAP, 10.0 pF, +/-5%, 250 V, 0603	1
C4, C9	CAP, 470 pF, 5%, 100 V, 0603, X	2
C5	CAP, 33000 pF, 0805, 100 V, X7R	1
C6	CAP, 10 uF 16 V TANTALUM	1
C10	CAP, 1.0 uF, 100 V, 10%, X7R, 1210	1
C11	CAP, 33 uF, 20%, G CASE	1
C12	CAP, 3300 uF, +/-20%, 100 V, ELECTROLYTIC	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER, RT>PLZ, 0.1 CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK, SMD	1
W1	CABLE, 18 AWG, 4.2	1
-	PCB, RO4350, 2.5 X 4.0 X 0.030	1
Q1	CGHV35400F	1

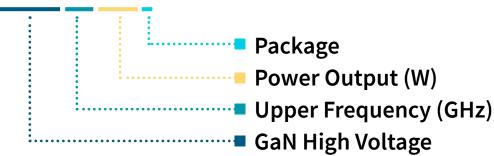

CGHV35400F Power Dissipation De-Rating Curve

Notes 1: Area exceeds maximum case operating temperature (see page 2).

CGHV35400F-AMP Application Circuit Outline



CGHV35400F-AMP Application Circuit Schematic


Product Dimensions CGHV35400F (Package Type - 440225)

Part Number System

Table 1.

Parameter	Value	Units
Upper Frequency ¹	3.5	GHz
Power Output	400	W
Package	Flange	-

Note:

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

 $^{^{\}rm 1}$ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV35400F	GaN HEMT	Each	CONTRACTOR OF THE PARTY OF THE
CGHV35400F-AMP	Test Board with GaN HEMT Installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.