

CGHV35150

150 W, 2900 - 3500 MHz, 50V, GaN HEMT for S-Band Radar Systems

Description

The CGHV35150 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV35150 ideal for 2.9 - 3.5 GHz S-Band radar amplifier applications. The transistor is supplied in a ceramic/metal flange and pill package.

Package Types: 440193 / 440206 PNs: CGHV35150F / CGHV35150P

Typical Performance 3.1 - 3.5 GHz ($T_c = 85^{\circ}C$)

Parameter	3.1 GHz	3.2 GHz	3.3 GHz	3.4 GHz	3.5 GHz	Units
Output Power	180	180	180	170	150	W
Gain	13.5	13.5	13.5	13.3	12.7	dB
Drain Efficiency	50	49	50	49	48	%

Note: Measured in the CGHV35150-AMP application circuit, under 300μs pulse width, 20% duty cycle, P_{IN} = 39 dBm

Features

- Rated Power = 150 W @ T_{CASE} = 85°C
- Operating Frequency = 2.9 3.5 GHz
- Transient 100μsec 300μsec @ 20% Duty Cycle
- 13 dB Power Gain @ T_{CASE} = 85°C
- 50% Typical Drain Efficiency @ T_{CASE} = 85°C
- Input Matched
- <0.3 dB Pulsed Amplitude Droop

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions	
Drain-Source Voltage	V _{DSS}	150	V	25°C	
Gate-to-Source Voltage	V_{GS}	-10, +2	V	25 C	
Storage Temperature	T _{STG}	-65, +150	°C		
Operating Junction Temperature	TJ	225	٠٠		
Maximum Forward Gate Current	I _{GMAX}	30	mA	25°C	
Maximum Drain Current ¹	I _{DMAX}	12	Α	25°C	
Soldering Temperature ²	Ts	245	°C		
Screw Torque	τ	40	in-oz		
Pulsed Thermal Resistance, Junction to Case ³	D	0.81	9C /M	200usos 200/, 95°C	
Pulsed Thermal Resistance, Junction to Case ⁴	− R _{θJC}	0.86	°C/W	300μsec, 20%, 85°C	
Case Operating Temperature	T _c	-40, +150	°C		

Notes:

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹ (T _c = 25°C)						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V}, I_D = 28.8 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	-	V _{DC}	$V_{DS} = 50 \text{ V}, I_{D} = 500 \text{ mA}$
Saturated Drain Current ²	I _{DS}	18.7	26.8	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V_{BR}	125	_	_	V _{DC}	$V_{GS} = -8 \text{ V}, I_D = 28.8 \text{ mA}$
RF Characteristics ³ (T _c = 25°C,	RF Characteristics 3 ($T_c = 25^{\circ}$ C, $F_0 = 3.1 - 3.5$ GHz unless otherwise noted)					
Output Power at 3.1 GHz	В	130	170	_	w	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 39 \text{ dBm}$
Output Power at 3.5 GHz	Роит	100	135	_) vv	
Gain at 3.1 GHz		12.0	13.3	_	dB	
Gain at 3.5 GHz	G _P	11.0	12.3	_	ав	
Drain Efficiency at 3.1 GHz		40	47	_	0/	
Drain Efficiency at 3.5 GHz	ή η	40	44	_	%	
Amplitude Droop	D	_	-0.3	-	dB	
Output Mismatch Stress	VSWR	_	_	5:1	Ψ	No damage at all phase angles, V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 39 dBm Pulsed

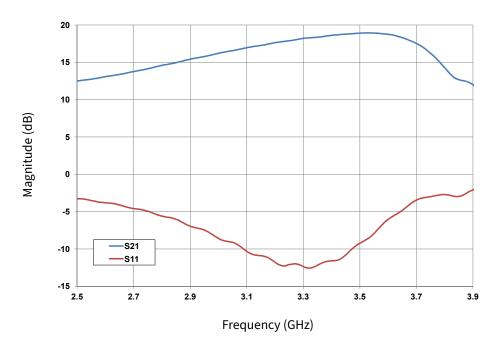
Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 $^{^{\}rm 3}$ Measured for the CGHV35150P at $P_{\rm DISS}$ = 150 W

 $^{^4}$ Measured for the CGHV35150F at P_{DISS} = 150 W

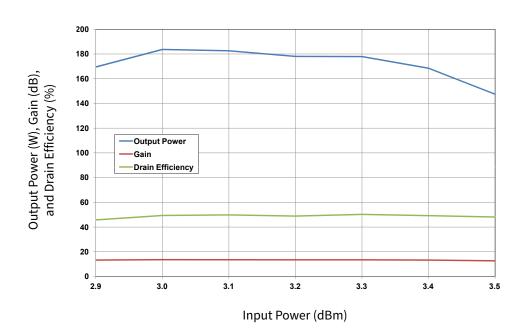
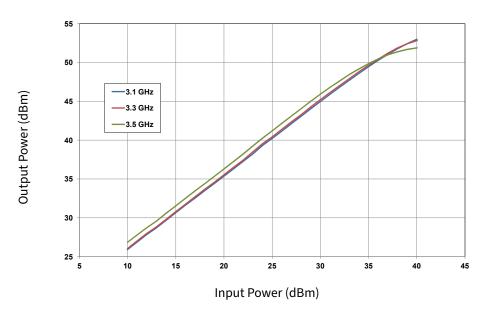

¹ Measured on wafer prior to packaging.

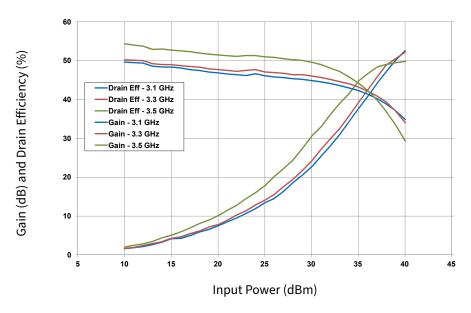
² Scaled from PCM data

 $^{^3}$ Measured in CGHV35150-AMP. Pulse Width = 300 μS , Duty Cycle = 20%

Typical Performance

Figure 1. CGHV35150 Typical S-Parameters $V_{DD} = 50 \text{ V}$, $I_{DQ} = 500 \text{ mA}$, $T_{CASE} = 25 ^{\circ}\text{C}$


Figure 2. CGHV35150 Typical RF Results V_{DD} = 50 V, I_{DQ} = 500 mA, P_{IN} = 39 dBm T_{PLATE} = 85°C, Pulse Width = 300 μ s, Duty Cycle = 20%

Typical Performance

Figure 3. CGHV35150 Output Power vs Input Power $V_{DD} = 50 \text{ V}$, $I_{DO} = 500 \text{ mA}$, $T_{PLATE} = 85^{\circ}\text{C}$, Pulse Width = 300 μ s, Duty Cycle = 20%

Figure 4. CGHV35150 Gain and Drain Efficiency vs Input Power V_{DD} = 50 V, I_{DQ} = 500 mA, T_{PLATE} = 85°C, Pulse Width = 300 μ s, Duty Cycle = 20%

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:

Rev. 1.4, 2022-12-2

CGHV35150 Power Dissipation De-rating Curve

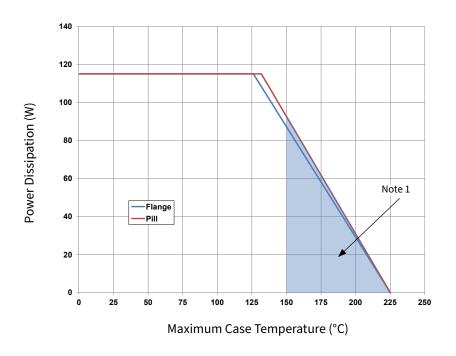
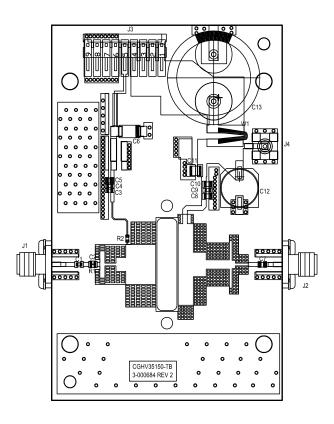
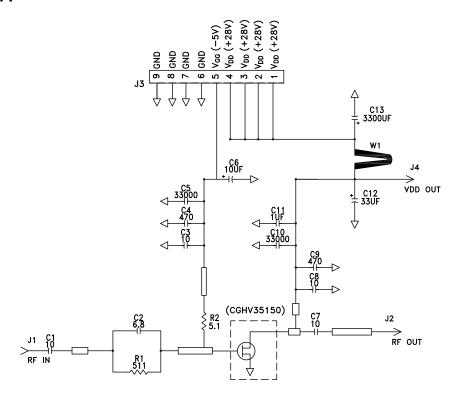


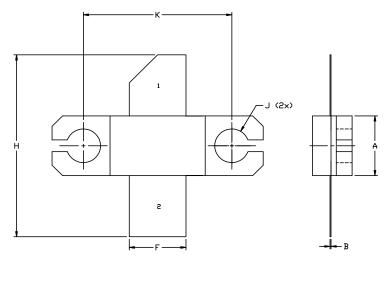
Figure 5. CGHV35150 Transient Power Dissipation De-Rating Curve


Note 1. Area exceeds Maximum Case Temperature (See Page 2)

CGHV35150-AMP Application Circuit Bill of Materials


Designator	Description	Qty
R1	RES, 511 OHM, +/- 1%, 1/16W, 0603	1
R2	RES, 5.1 OHM, +/- 1%, 1/16W, 0603	1
C1,C7,C8	CAP, 10pF, +/- 1%, 250V, 0805	3
C2	CAP, 6.8pF, +/- 0.25pF, 250V, 0603	1
С3	CAP, 10.0pF, +/-5%, 250V, 0603	1
C4,C9	CAP, 470pF, 5%, 100V, 0603, X	2
C5,C10	CAP, 33000pF, 0805,100V, X7R	1
C6	CAP, 10μF, 16V TANTALUM	1
C11	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
C12	CAP, 33μF, 20%, G CASE	1
C13	CAP, 3300µF, +/-20%, 100V, ELECTROLYTIC	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK, SMD	1
W1	CABLE, 18 AWG, 4.2	1
	PCB, RO4350, 20 MIL THK, CGHV35150	1
Q1	CGHV35150	1

CGHV35150-AMP Application Circuit Outline

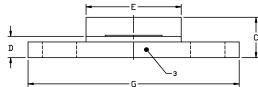


CGHV35150-AMP Application Circuit Schematic

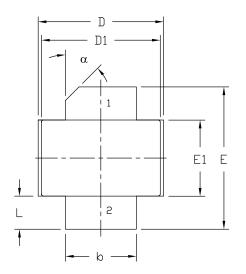
Product Dimensions CGHV35150F (Package Type — 440193)

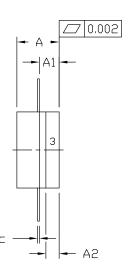
INCHES MILLIMETERS MIN MAX MIN MAX 0.225 0.235 5.72 5.97 В 0.004 | 0.006 | 0.10 0.15 С 0.145 | 0.165 | 3.18 4.19 D 0.077 0.087 1.96 2.21 0.355 0.365 9.02 9.27 0.210 0.220 5.33 0.795 0.805 20.19 20.45 G 0.670 0.730 17.02 18.54 3.30 ø .130 0.562 14,28

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.


3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM DF 0.020 BEYOND EDGE DF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
5. ALL PLATED SURFACES ARE NI/AU


2. CONTROLLING DIMENSION: INCH.


PIN 1. GATE PIN 2. DRAIN PIN 3. STUPCE

NOTES

Product Dimensions CGHV35150P (Package Type — 440206)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M $-\,$ 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3, ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008° IN ANY DIRECTION.

	INC	HES	MILLIM	IETERS	NOTES
DIM	MIN	MAX	MIN	MAX	
Α	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
С	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
Е	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2x
α	45° REF		45° REF		

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE

Part Number System

CGHV35150F

Table 1.

Parameter	Value	Units
Upper Frequency ¹	3.5	GHz
Power Output	150	W
Package	F = Flange, P = Pill	_

Note

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV35150F	GaN HEMT	Each	CGHV35150P CO78865
CGHV35150P	GaN HEMT	Each	CGHV35150P CO7894S
CGHV35150F-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.