

# CGHV35120F

120 W, 2.9 - 3.8 GHz, 50 V, GaN HEMT for S-Band Radar Systems

#### **Description**

The CGHV35120F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV35120F ideal for 2.9 - 3.8 GHz S-Band radar amplifier applications. The transistor is supplied in a ceramic/metal flange package.



PN: 440162 Package Type: CGHV35120F

## Typical Performance 3.1 - 3.5 GHz ( $T_c = 85$ °C)

| Parameter        | 3.1 GHz | 3.2 GHz | 3.3 GHz | 3.4 GHz | 3.5 GHz | Units |
|------------------|---------|---------|---------|---------|---------|-------|
| Output Power     | 142     | 135     | 132     | 136     | 134     | W     |
| Gain             | 13      | 12.8    | 12.8    | 12.9    | 12.8    | dBc   |
| Drain Efficiency | 68      | 66      | 63      | 62      | 62      | %     |

Note: Measured in the CGHV35120F-AMP1 application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit, under 100  $\mu s$  pulse width, 10% duty cycle,  $P_{IN} = 38.5$  dBm application circuit,  $P_{IN} = 38.5$  dBm application circuit cir

#### **Features**

- Rated Power = 120 W @ T<sub>CASE</sub> = 85°C
- Operating Frequency = 2.9 3.8 GHz
- Transient 100 μsec 300 μsec @ 20% Duty Cycle
- 13 dB Power Gain @ T<sub>CASE</sub> = 85°C

- 62% Typical Drain Efficiency @ T<sub>CASE</sub> = 85°C
- Input Matched
- <0.3 dB Pulsed Amplitude Droop



Large Signal Models Available for ADS and MWO





#### **Absolute Maximum Ratings (not simultaneous)**

| Parameter                                                | Symbol            | Rating    | Units | Conditions          |
|----------------------------------------------------------|-------------------|-----------|-------|---------------------|
| Drain-Source Voltage                                     | V <sub>DSS</sub>  | 150       | V     | 0.500               |
| Gate-to-Source Voltage                                   | V <sub>GS</sub>   | -10, +2   | V     | 25°C                |
| Storage Temperature                                      | T <sub>STG</sub>  | -65, +150 | °C    |                     |
| Operating Junction Temperature                           | T <sub>J</sub>    | 225       |       |                     |
| Maximum Forward Gate Current                             | I <sub>GMAX</sub> | 22.5      | mA    | 2500                |
| Maximum Drain Current <sup>1</sup>                       | I <sub>DMAX</sub> | 9         | Α     | 25°C                |
| Soldering Temperature <sup>2</sup>                       | T <sub>s</sub>    | 245       | °C    |                     |
| Screw Torque                                             | τ                 | 40        | in-oz |                     |
| Pulsed Thermal Resistance, Junction to Case <sup>3</sup> | R <sub>eJC</sub>  | 1.2       | °C/W  | 300 μsec, 20%, 85°C |
| Case Operating Temperature                               | T <sub>C</sub>    | -40, +130 | °C    |                     |

#### Notes:

#### **Electrical Characteristics**

| Characteristics                                          | Symbol                  | Min.    | Тур.    | Max.     | Units           | Conditions                                                                                                              |  |
|----------------------------------------------------------|-------------------------|---------|---------|----------|-----------------|-------------------------------------------------------------------------------------------------------------------------|--|
| DC Characteristics <sup>1</sup> (T <sub>C</sub> = 25°C)  |                         |         |         |          |                 |                                                                                                                         |  |
| Gate Threshold Voltage                                   | V <sub>GS(th)</sub>     | -3.8    | -3.0    | -2.3     | V <sub>DC</sub> | $V_{DS} = 10 \text{ V}, I_{D} = 21.6 \text{ mA}$                                                                        |  |
| Gate Quiescent Voltage                                   | $V_{GS(Q)}$             | _       | -2.7    | _        |                 | $V_{DS} = 48 \text{ V}, I_{D} = 220 \text{ mA}$                                                                         |  |
| Saturated Drain Current <sup>2</sup>                     | I <sub>DS</sub>         | 16.2    | 20.1    | _        | Α               | $V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$                                                                        |  |
| Drain-Source Breakdown Voltage                           | $V_{BR}$                | 125     | _       | _        | V <sub>DC</sub> | $V_{GS} = -8 \text{ V}, I_{D} = 21.6 \text{ mA}$                                                                        |  |
| RF Characteristics <sup>3</sup> ( $T_c = 25$ °C, $F_0 =$ | 3.1 - 3.5 GH            | z unles | s other | wise not | ted)            |                                                                                                                         |  |
| Output Power at 3.1 GHz                                  | D                       | 135     | 142     | _        | W               | $V_{DD} = 48 \text{ V}, I_{DQ} = 220 \text{ mA}, P_{IN} = 38.5 \text{ dBm}$                                             |  |
| Output Power at 3.5 GHz                                  | P <sub>out</sub>        | 120     | 134     | _        | VV              |                                                                                                                         |  |
| Output Return Loss                                       | ORL                     | _       | -8      | -6       |                 |                                                                                                                         |  |
| Input Return Loss                                        | IRL                     | _       | -8      | -6       | dB              |                                                                                                                         |  |
| Gain at 3.1 GHz                                          | _                       | _       | 13      | _        |                 |                                                                                                                         |  |
| Gain at 3.5 GHz                                          | G <sub>P</sub>          | _       | 12.8    | _        |                 |                                                                                                                         |  |
| Drain Efficiency at 3.1 GHz                              | <b>D</b>                | 64      | 68      | _        | %               |                                                                                                                         |  |
| Drain Efficiency at 3.5 GHz                              | D <sub>E</sub>          | 60      | 62      | _        | 90              |                                                                                                                         |  |
| Amplitude Droop                                          | D                       | _       | -0.3    | _        | dB              |                                                                                                                         |  |
| Output Mismatch Stress                                   | VSWR                    | _       | _       | 5:1      | Ψ               | No damage at all phase angles, $V_{DD} = 48 \text{ V}$ , $I_{DQ} = 220 \text{ mA}$ , $P_{IN} = 38.5 \text{ dBm Pulsed}$ |  |
| Dynamic Characteristics                                  | Dynamic Characteristics |         |         |          |                 |                                                                                                                         |  |
|                                                          | C <sub>GS</sub> — 65 —  |         |         |          |                 |                                                                                                                         |  |
| Input Capacitance                                        | C <sub>DS</sub>         | _       | 9.5     | _        | pF              | $V_{DS} = 48 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$                                                       |  |
|                                                          | C <sub>GD</sub>         | _       | 0.7     | _        |                 |                                                                                                                         |  |

#### Notes:

<sup>&</sup>lt;sup>2</sup> Current limit for long term, reliable operation <sup>2</sup> Refer to the Application Note on soldering <sup>3</sup> Measured for the CGHV35120F at P<sub>DISS</sub> = 80 W

Notes.

1 Measured on wafer prior to packaging

2 Scaled from PCM data

3 Measured in CGHV35120-AMP. Pulse Width = 100 μs, Duty Cycle = 10%



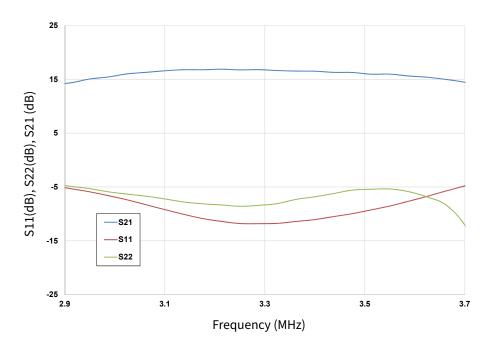
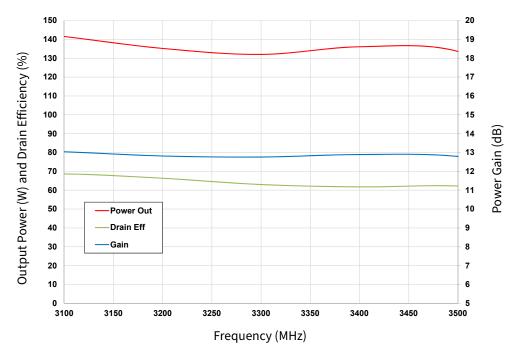
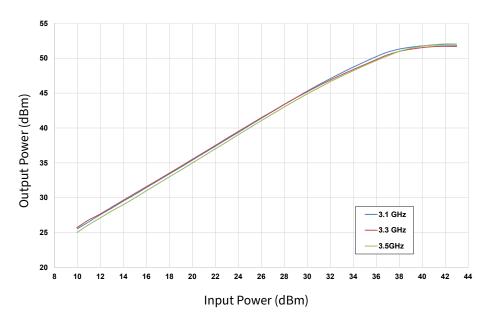





Figure 1. CGHV35120F Typical S Parameters Measured in CGHV35120F-AMP1  $V_{DD} = 48 \text{ V}, I_{DO} = 220 \text{ mA}, T_{CASE} = 25 ^{\circ}\text{C}$ 



**Figure 2.** CGHV35120F Typical RF Results Measured in CGHV35120F-AMP1  $V_{DD}$  = 48 V,  $I_{DO}$  = 220 mA,  $T_{PLATE}$  = 85°C, Pulse Width = 100  $\mu$ s, Duty Cycle = 10%





**Figure 3.** CGHV35120F Output Power vs Input Power Measured in CGHV35120F-AMP1  $V_{DD}$  = 48 V,  $I_{DQ}$  = 220 mA,  $T_{PLATE}$  = 85°C, Pulse Width = 100  $\mu$ s, Duty Cycle = 10%

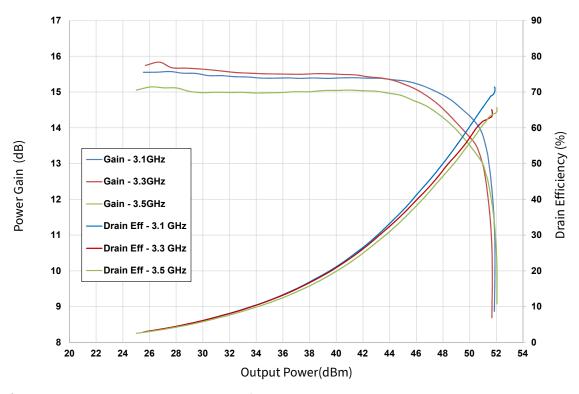



Figure 4. CGHV35120F Gain and Drain Efficiency vs Output Power Measured in CGHV35120F-AMP1  $V_{DD}$  = 48 V,  $I_{DQ}$  = 220 mA,  $T_{PLATE}$  = 85°C, Pulse Width = 100  $\mu$ s, Duty Cycle = 10%



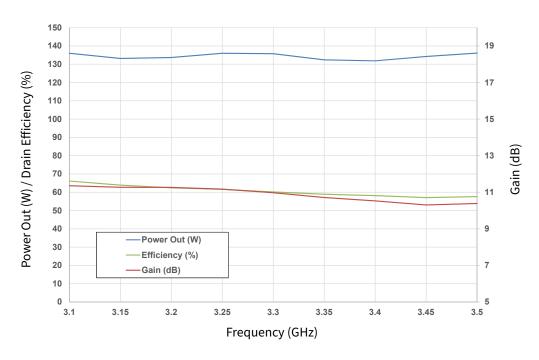
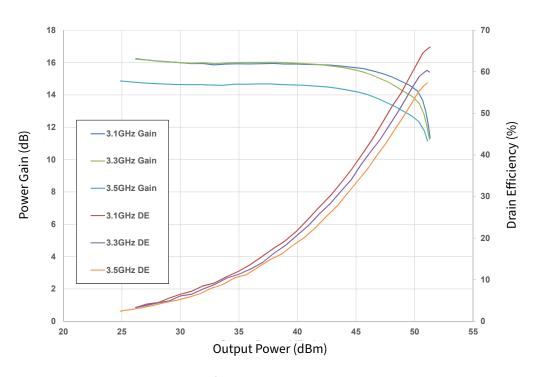
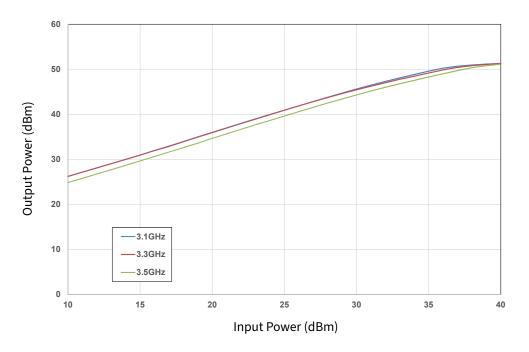




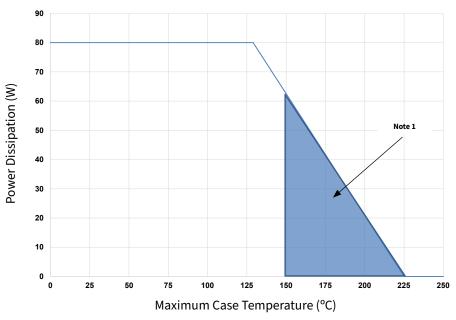

Figure 5. CGHV35120F Power Out/Drain Efficiency vs Frequency Measured in CGHV35120F-AMP1  $V_{DD} = 48 \text{ V}$ ,  $P_{SAT}$  where IG > 0, Pulse Width = 1msec, Duty Cycle = 20%



**Figure 6.** CGHV35120F Gain and Drain Efficiency vs Output Power Measured in CGHV35120F-AMP1  $V_{DD}$  = 48 V,  $I_{DQ}$  = 220 mA,  $T_{PLATE}$  = 25°C, Pulse Width = 1msec, Duty Cycle = 20%






**Figure 7.** CGHV35120F Output Power vs Input Power Measured in CGHV35120F-AMP1  $V_{DD} = 48 \text{ V}$ ,  $I_{DO} = 220 \text{ mA}$ ,  $T_{PLATE} = 25 ^{\circ}\text{C}$ , Pulse Width = 1msec, Duty Cycle = 20%

## **Electrostatic Discharge (ESD) Classifications**

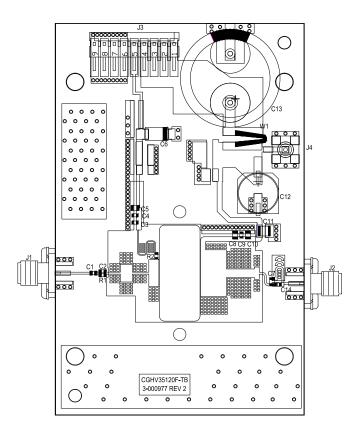
| Parameter           | Symbol | Class | Classification Level           | Test Methodology    |
|---------------------|--------|-------|--------------------------------|---------------------|
| Human Body Model    | НВМ    | 1A    | ANSI/ESDA/JEDEC JS-001 Table 3 | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | 0CB   | ANSI/ESDA/JEDEC JS-002 Table 3 | JEDEC JESD22 C101-C |



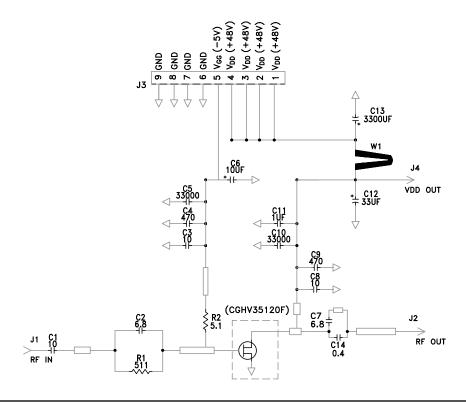
## **CGHV35120F Power Dissipation De-rating Curve**



Note: Area exceeds Maximum Case Temperature (See Page 2)

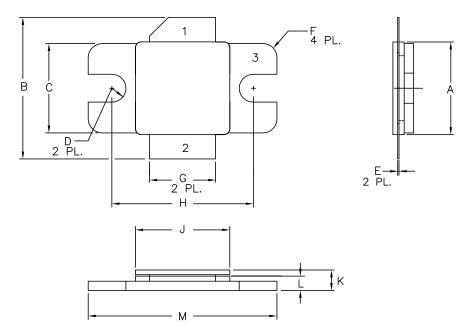

#### **CGHV35120F Bill of Materials**

| Designator | Description                                                    | Qty |
|------------|----------------------------------------------------------------|-----|
| R1         | RES, 511 ohms, +/- 1%, 1/16W, 0603                             | 1   |
| R2         | RES, 5.1, ohm, +/- 1%, 1/16W, 0603                             | 1   |
| C8         | CAP, 10pF, +/- 1%, 250V, 0805, ATC                             | 2   |
| C2         | CAP, 6.8pF, +/- 0.25 pF, 250V, 0603, ATC                       | 1   |
| C1, C3     | CAP, 10.0pF, +/-5%, 250V, 0603, ATC                            | 2   |
| C4, C9     | CAP, 470pF, 5%, 100V, 0603, X7R                                | 2   |
| C5, C10    | CAP, 33000pF, 0805,100V, X7R                                   | 2   |
| C6         | CAP, 10μF, 16V, TANTALUM                                       | 1   |
| C7         | CAP, 6.8pF, +/- 1%, 250V, 0805, ATC                            | 1   |
| C11        | CAP, 1.0μF, 100V, 10%, X7R, 1210                               | 1   |
| C12        | CAP, 33 μF, 20%, G CASE                                        | 1   |
| C13        | CAP, 3300 μF, +/-20%, 100V, ELECTROLYTIC                       | 1   |
| C14        | CAP, 0.4pF, +/-0.1pF, 0603, ATC                                | 1   |
| J1, J2     | CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL | 2   |
| J3         | HEADER RT>PLZ .1CEN LK 9POS                                    | 1   |
| J4         | CONNECTOR; SMB, Straight, JACK, SMD                            | 1   |
| W1         | CABLE, 18 AWG, 4.2                                             | 1   |
|            | PCB, RO4350, 10 MIL THK, CGHV35120F                            | 1   |
| Q1         | CGHV35120F                                                     | 1   |


For further information and support please visit: Rev. 1.0, 2022-8-3



## **CGHV35120F-AMP1 Application Circuit Outline**




## **CGHV35120F-AMP1 Application Circuit Schematic**





## Product Dimensions CGHV35120F (Package Type — 440162)



#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- LID MAY BE MISALIGNED TO THE BODY
  OF THE PACKAGE BY A MAXIMUM OF 0.008" IN
  ANY DIRECTION.

|     | INCHES |      | MILLIM | ETERS |
|-----|--------|------|--------|-------|
| DIM | MIN    | MAX  | MIN    | MAX   |
| Α   | .395   | .405 | 10.03  | 10.29 |
| В   | .580   | .620 | 14.73  | 15.75 |
| С   | .380   | .390 | 9.65   | 9.91  |
| D   | .055   | .065 | 1.40   | 1.65  |
| Е   | .004   | .006 | 0.10   | 0.15  |
| F   | .055   | .065 | 1.40   | 1.65  |
| G   | .275   | .285 | 6.99   | 7.24  |
| Н   | .595   | .605 | 15.11  | 15.37 |
| J   | .395   | .405 | 10.03  | 10.29 |
| K   | .129   | .149 | 3.28   | 3.78  |
| L   | .053   | .067 | 1.35   | 1.70  |
| М   | .795   | .805 | 20.19  | 20.45 |

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE



#### **Part Number System**

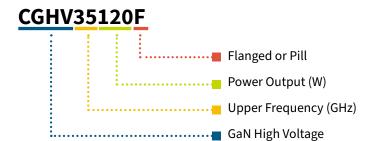



Table 1.

| Parameter                    | Value  | Units |
|------------------------------|--------|-------|
| Upper Frequency <sup>1</sup> | 3.8    | GHz   |
| Power Output                 | 120    | W     |
| Package                      | Flange | _     |

Table 2.

| Character Code | Code Value                     |
|----------------|--------------------------------|
| А              | 0                              |
| В              | 1                              |
| С              | 2                              |
| D              | 3                              |
| E              | 4                              |
| F              | 5                              |
| G              | 6                              |
| Н              | 7                              |
| J              | 8                              |
| K              | 9                              |
| Examples:      | 1A = 10.0 GHz<br>2H = 27.0 GHz |

Note: ¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.



## **Product Ordering Information**

| Order Number    | Description                                      | Unit of Measure | Image    |
|-----------------|--------------------------------------------------|-----------------|----------|
| CGHV35120F      | GaN HEMT                                         | Each            | CONTROLL |
| CGHV35120F-AMP1 | 3.1 - 3.5 GHz test board with GaN HEMT installed | Each            |          |



#### Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.