

CGHV35060MP

60 W, 2700-3800 MHz, 50 V GaN HEMT for S-Band Radar and LTE Base Stations

Description

CGHV35060MP is a 60 W input matched, gallium nitride (GaN) high electron mobility transistor (HEMT) optimized for S-Band performance. The CGHV35060MP is suitable for typical bands of 2.7-3.1 GHz and 3.1-3.5 GHz while the input matched transistor provides optimal gain, power and efficiency in a small 6.5mm x 4.4mm plastic surface mount (SMT) package. The typical performance plots in the datasheet are derived with CGHV35060MP matched into a 3.1-3.5 GHz high power amplifier.

PN: CGHV35060MP

Typical Performance Over 3.1 - 3.5 GHz (T_c = 25°C) of Demonstration Amplifier

Parameter	3.1 GHz	3.3 GHz	3.5 GHz	Units
Gain	14.5	14.3	13.8	dB
Output Power	88	88	75	W
Drain Efficiency	61	67	64	%

Note: Measured in the CGHV35060MP-AMP1 amplifier circuit, under 100 μ s pulse width, 10% duty cycle, P_{IN} = 35 dBm

Features

- Reference design amplifier 3.1 3.5 GHz
- 75W Typical output power
- 14.5 dB power gain
- 67% Drain efficiency
- Internally pre-matched on input, unmatched output

Large Signal Models Available for ADS and MWO

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	150	V	25%
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225	Ľ	
Maximum Forward Gate Current	I _{GMAX}	10.4	mA arec	
Maximum Drain Current ¹	I _{DMAX}	6.3	A	
Soldering Temperature ²	Ts	245	°C	
CW Thermal Resistance, Junction to Case ³	Р	2.6	9C /M	85°C, P _{DISS} = 52 W
Pulsed Thermal Resistance, Junction to Case	κ _{θJC}	1.95	C/ W	85°C, P _{DISS} = 62 W, 100μsec 10%
Case Operating Temperature ⁴	Tc	-40, +107	°C	CW

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

³ Measured for the CGHV35060MP

⁴ See also, the Power Dissipation De-rating Curve on Page 6

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹							
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	N	$V_{DS} = 10 \text{ V}, I_D = 10.4 \text{ mA}$	
Gate Quiescent Voltage	$V_{GS(Q)}$	—	-2.7	_	V _{DC}	$V_{DS} = 50 \text{ V}, I_{D} = 125 \text{ mA}$	
Saturated Drain Current ²	I _{DS}	8.4	10.4	_	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$	
Drain-Source Breakdown Voltage	V_{BR}	125	_	_	V _{DC}	$V_{GS} = -8 \text{ V}, I_{D} = 10.4 \text{ mA}$	
RF Characteristics⁴ (T _c = 25°C, F₀ = 3.225 GHz unless otherwise noted)							
Saturated Output Power ^{3,6}	P _{SAT}	55	75	_	W		
Pulsed Drain Efficiency ^{3,6}	η	46	59.1	_	%	$V_{DD} = 50$ V, $I_{DQ} = 125$ IIIA, $P_{IN} = 34.5$ dBIII	
Gain ^{3,6}	G	14.35	16.3	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 125 \text{ mA}, P_{IN} = 10 \text{ dBm}$	
Output Mismatch Stress ³	VSWR	_	_	10:1	Ψ	No damage at all phase angles, V_{DD} = 50 V, I_{DQ} = 125 mA, P_{OUT} = 60 W Pulsed	
Dynamic Characteristics							
Input Capacitance⁵	C _{GS}	-	32.16	-			
Output Capacitance⁵	C _{DS}	_	4.4	_	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$	
Feedback Capacitance	C_{GD}	-	0.5	_			

Notes:

¹ Measured on wafer prior to packaging

² Scaled from PCM data

 3 Pulse Width = 100 \mus, Duty Cycle = 10%

⁴ Measured in CGHV35060MP high volume test fixture

⁵ Includes package

⁶ Includes offsets correlating data taken in high volume test fixture to data taken in application circuit with device soldered down

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

²

Typical Performance

Figure 1. Small Signal Gain and Return Losses vs Frequency Measured in Demonstration Amplifier Circuit CGHV35060MP-AMP1

³ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance

Figure 6. CGHV35060MP-AMP1 Output Power vs. Time, Varying Pulse Lengths $V_{DD} = 50 \text{ V P}_{IN} = 35 \text{ dBm}$, Duty Cycle = 10%

⁵ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 2.4, 2022-12-2

CGHV35060MP

CGHV35060MP Power Dissipation De-rating Curve

Note 1. Area exceeds Maximum Case Temperature (See Page 2)

CGHV35060MP-AMP1 Application Circuit Bill of Materials

Designator	Description	Qty
R1	RES,1/16W,0603,1%,150 OHMS	1
R20,R21	RES,1/16W,0603,1%,10.0 OHMS	2
C1	CAP, 2.2pF, +/-0.1pF, 0603, ATC	1
C2,C20-C30	CAP, 10.0pF, +/-5%, 0603, ATC	12
C3,C4	CAP, 1.3pF, +/-0.1pF, 0603, ATC	2
C11,C14	CAP, 0.7pF, +/-0.05pF, 0603, ATC	2
C13,C12	CAP, 0.9pF, +/-0.05 pF, 0603, ATC	2
C15,C16	CAP, 1.0pF, +/-0.05pF, 0603, ATC	2
C17	CAP, 0.1pF, +/-0.05pF, 0603, ATC	1
C41,C42,C43	CAP CER 2.2µF 100V 10% X7R 1210	3
C51,C53	CAP CER 10µF 100V 20% X7S 2220	2
C61	CAP, 33µF, 20%, G CASE, 100V	1
J1,J2	SMA PANEL RECEPTACLE JACK	2
J3	HEADER RT>PLZ .1CEN LK 5POS	1
	Cu BASEPLATE 2.6 x 1.7 x 0.25" WITH PEDESTAL FOR GULLWING eTSSOP	1
	PCB, TEST FIXTURE, RO4350, .020 THK, CGHV35060MP	1
	2-56 SOC HD SCREW 1/4 SS	4
	#2 SPLIT LOCKWASHER SS	4
	PREFORM, eTSSOP, 0.174 x 0.130 x 0.005	1
Q1	60W, GaN HEMT TSSOP 20L, 2.7 -3.5GHz, 50V PLASTIC, "CGHV35060MP"	1

6 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

7

CGHV35060MP-AMP1 Application Circuit Outline

CGHV35060MP-AMP1 Application Circuit Schematic

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u>

Product Dimensions CGHV35060MP (4.4 mm TSSOP 20-Lead Package)

SEE 'A'

NDTES:

DETAIL 'A' (VIEW ROTATED 90* C.W.)

S Y		СОММОН			
м	DI	MENSID	NS	No	
٩.	MIN.	NDM.	MAX.	Τε	
Α			1.15		
A ₁	0.05		0.15	8	
Az	0.80	0.91	1.02		
aaa	0.076				
b	0.20	-	0.33		
C	0.10	-	0.23		
D	6.40	6.50	6.60	3,6	
E1	4.30	4.40	4.50	4,6	
е	0.65 BSC				
E		6.40 BSC			
L	0.45	0.60	0.75		
D1	3.61	3.72	3.83	7	
E2	2.41	2.52	2.63	7	
ddd		0.20			

1. ALL DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).

 \bigtriangleup DIMENSION 'D' DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

AI IS DEFINED AS THE VERTICAL CLEARANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY.

 \triangle DIMENSION 'E1' DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE

2. DIMENSIONING & TOLERANCES PER ASME. Y14.5M-1994.

⚠ DATUMS A AND B TO BE DETERMINED AT DATUM PLANE H.

// "D1" AND "E2" DIMENSIONS DO NOT INCLUDE MOLD FLASH.

LIMENSIONS 'D' AND 'E1' TO BE DETERMINED AT DATUM PLANE H.

PIN	FUNCTION
1	GND
2	GND
3	RF INPUT
4	RF INPUT
5	RF INPUT
6	RF INPUT
7	RF INPUT
8	RF INPUT
9	GND
10	GND
11	GND
12	GND
13	RF DUTPUT
14	RF DUTPUT
15	RF DUTPUT
16	RF DUTPUT
17	RF DUTPUT
18	RF DUTPUT
19	GND
20	GND

PINDUT TABLE

Electrostatic Discharge (ESD) Classifications

8

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Part Number System

Table 1.

Parameter	Value	Units
Upper Frequency ¹	3.5	GHz
Power Output	60	W
Package	MP	_

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

9 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV35060MP	GaN HEMT	Each	
CGHV35060MP-AMP1	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹¹ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support