

CGHV31500F

500 W, 2700 - 3100 MHz, 50-Ohm Input/Output Matched, GaN HEMT for S-Band Radar Systems

Description

The CGHV31500F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV31500F ideal for 2.7 - 3.1 GHz S-Band radar amplifier applications. The transistor is supplied in a ceramic/metal flange package, type 440226.

Package Types: 440226 PN's: CGHV31500F

Features

- 2.7 3.1 GHz operation
- 650 W typical output power
- 12 dB power gain
- 65% typical drain efficiency
- 50 Ohm internally matched
- <0.3 dB pulsed amplitude droop

Typical Performance Over 2.7-3.1 GHz (T_c = 25 °C) of Demonstration Amplifier

Parameter	2.7 GHz	2.9 GHz	3.1 GHz	Units
Output Power	630	725	630	w
Gain	12.1	12.5	11.8	dB
Drain Efficiency	70	68	58	%

Note:

Measured in the CGHV31500F-AMP application circuit, under 100 μs pulse width, 10% duty cycle, P_{IN} = 46 dBm.

Absolute Maximum Ratings (Not Simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Pulse Width	PW	500	μs	
Duty Cycle	DC	10	%	
Drain-Source Voltage	V _{DSS}	150	Volts	25 °C
Gate-to-Source Voltage	V _{GS}	-10, +2	Volts	25 °C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Maximum Forward Gate Current	I _{GMAX}	80	mA	25 °C
Maximum Drain Current ¹	I _{DMAX}	24	А	25 °C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Pulsed Thermal Resistance, Junction to Case	R _{euc}	0.22	°C/W	100 μsec, 10%, 85 °C, P _{DISS} = 376 W
Case Operating Temperature	T _c	-40, +125	°C	

Notes:

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics¹(T _c = 25 °C)						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	V _{DC}	$V_{DS} = 10 \text{ V}, I_{D} = 83.6 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V _{DC}	$V_{DS} = 50 \text{ V}, I_{D} = 0.5 \text{ A}$
Saturated Drain Current ²	I _{DS}	62.7	75.5	-	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR}	125	-	-	V _{DC}	$V_{GS} = -8 \text{ V}, I_{D} = 83.6 \text{ mA}$
RF Characteristics ³ ($T_c = 25 ^{\circ}\text{C}, F_0 = 2.6 ^{\circ}\text{C}$	7 - 3.1 GHz U	nless Oth	erwise No	ted)		
Output Power at 2.7 GHz	P _{OUT1}	473	630	-	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$
Output Power at 2.9 GHz	P _{OUT2}	555	725	-	w	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$
Output Power at 3.1 GHz	Роитз	473	630	-	w	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$
Gain at 2.7 GHz	G _{P1}	-	12.1	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$
Gain at 2.9 GHz	G _{P2}	-	12.5	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$
Gain at 3.1 GHz	G _{P3}	-	11.8	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$
Drain Efficiency at 2.7 GHz	D _{E1}	57	68	-	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$
Drain Efficiency at 2.9 GHz	D _{E2}	54	67	-	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$
Drain Efficiency at 3.1 GHz	D _{E3}	50	62	-	%	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm}$
Small Signal Gain	S21	11.25	14.5	-	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 10 \text{ dBm}$
Input Return Loss	S11	-	-15	-5.25	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 10 \text{ dBm}$
Output Return Loss	S22	-	-5	-3	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 10 \text{ dBm}$
Amplitude Droop	D	-	-0.3	-	dB	V _{DD} = 50 V, I _{DQ} = 500 mA, P _{IN} = 46 dBm
Output Stress Match	VSWR	-	5.1	-	Ψ	No Damage at All Phase Angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 500 \text{ mA}, P_{IN} = 46 \text{ dBm Pulsed}$

Notes:

 $^{^{\}mbox{\tiny 1}}$ Current limit for long term, reliable operation.

² Refer to the Application Note on soldering

 $^{^{\}scriptscriptstyle 1}\,\text{Measured}$ on wafer prior to packaging.

 $^{^{\}rm 2}$ Scaled from PCM data.

 $^{^3}$ Measured in CGHV31500F-AMP. Pulse width = 100 $\mu S,$ duty cycle = 10%.

Typical Performance

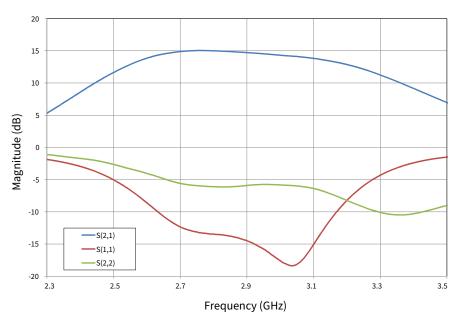


Figure 1. CGHV31500F S-Parameters $V_{DD} = 50 \text{ V}$, $I_{DQ} = 0.5 \text{ A}$

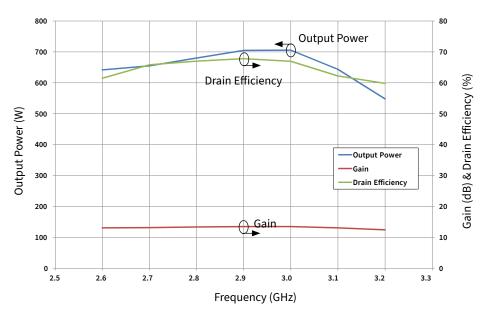


Figure 2. CGHV31500F Output Power and Drain Efficiency vs Frequency V_{DD} = 50 V, I_{DQ} = 0.5 A, P_{IN} = 46 dBm, Pulse Width = 100 μ s, Duty Cycle = 10%, T_{CASE} = 25 °C

Typical Performance

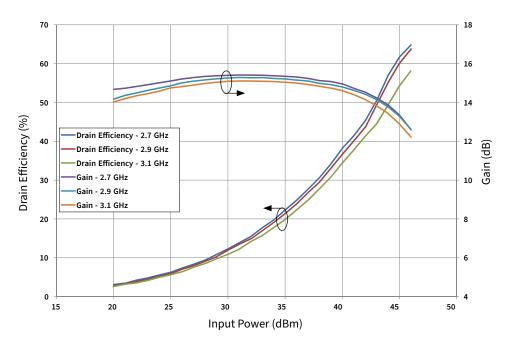
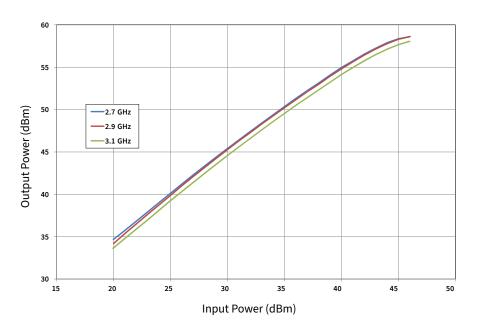
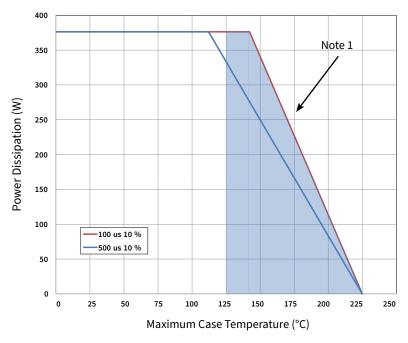


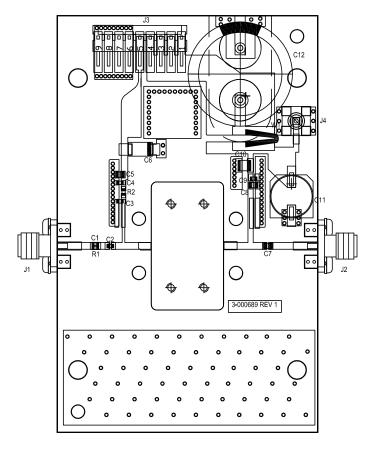
Figure 3. CGHV31500F Drain Efficiency & Gain vs. Input Power V_{DD} = 50 V, I_{DO} = 500 mA, Pulse Width = 100 μ s, Duty Cycle = 10%

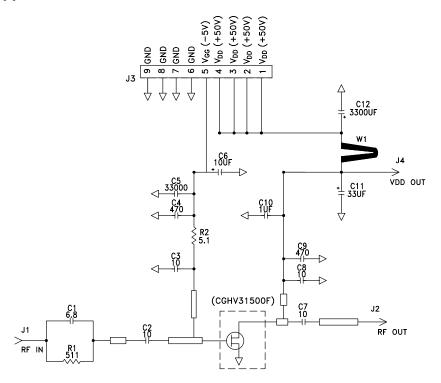



Figure 4. CGHV31500F Output Power vs. Input Power V $_{DD}$ = 50 V, I $_{DQ}$ = 0.5 A, Pulse Width = 100 μs , Duty Cycle = 10%, T $_{CASE}$ = 25 °C

CGHV31500F-AMP Application Circuit Bill of Materials

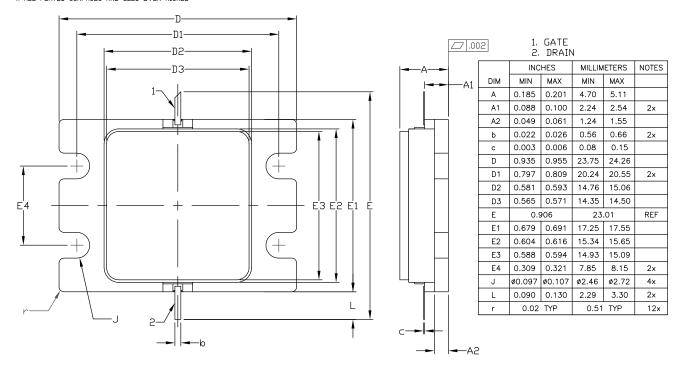
Designator	Description	Qty
R1	RES, 511, OHM, +/- 1%, 1/16 W, 0603	1
R2	RES, 5.1, OHM, +/- 1%, 1/16 W, 0603	1
C1	CAP, 6.8 pF, +/-0.25%, 250 V, 0603	1
C2, C7, C8	CAP, 10.0 pF, +/-1%, 250 V, 0805	3
C3	CAP, 10.0 pF, +/-5%, 250 V, 0603	1
C4, C9	CAP, 470 pF, 5%, 100 V, 0603, X	2
C5	CAP, 33000 pF, 0805, 100 V, X7R	1
C6	CAP, 10 uF 16 V TANTALUM	1
C10	CAP, 1.0 uF, 100 V, 10%, X7R, 1210	1
C11	CAP, 33 uF, 20%, G CASE	
C12	CAP, 3300 uF, +/-20%, 100 V, ELECTROLYTIC	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FL	
J3	J3 HEADER, RT>PLZ, 0.1 CEN LK 9 POS	
J4	CONNECTOR; SMB, Straight, JACK, SMD	
W1	CABLE, 18 AWG, 4.2	1
-	PCB, RO4350, 2.5 X 4.0 X 0.030	1
Q1	CGHV31500F	1


CGHV31500F Power Dissipation De-rating Curve

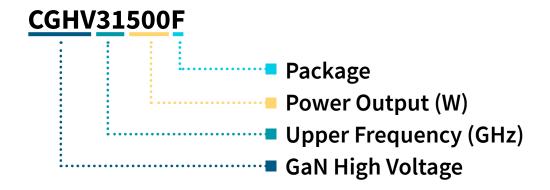

Note 1. Area exceeds maximum case operating temperature (See page 2).

CGHV31500F-AMP Application Circuit Outline

CGHV31500F-AMP Application Circuit Schematic



Product Dimensions CGHV31500F (Package Type — 440226)


NOTES: (UNLESS OTHERWISE SPECIFIED)

- 1. INTERPRET DRAWING IN ACCORDANCE WITH ANSI Y14.5M-2009
- 2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF .020 BEYOND EDGE OF LID
- 3. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION
- 4. ALL PLATED SURFACES ARE GOLD OVER NICKEL

Part Number System

Table 1.

Parameter	Value	Units
Upper Frequency ¹	3.1	GHz
Power Output	500	W
Package	Flange	-

Note

Table 2.

Parameter	Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

 $^{^{\}rm 1}$ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV31500F	GaN HEMT	Each	Self-triple to
CGHV31500F-AMP	Test Board with GaN HEMT Installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.