

# CGHV27060MP

60 W, DC - 2.7 GHz, 50 V, GaN HEMT for Communication Amplifiers and Pulse Radar Applications

## Description

The CGHV27060MP is a 60 W gallium nitride (GaN) high electron mobility transistor (HEMT) housed in a small plastic SMT package 4.4 mm x 6.5 mm. The transistor is a broadband device with no internal input or output match which allows for the agility to apply to a wide range of frequencies from UHF thru 2.7GHz. The CGHV27060MP makes for an excellent transistor for pulsed applications at UHF, L-Band, or low S-Band (<2.7GHz). Additionally, the transistor is well suited for communication amplifiers in the power class of 10 to 15 W average power in high efficiency topologies such as Class A/B, F, or Doherty amplifiers.

## Typical Performance Over 2.5 - 2.7 GHz ( $T_c = 25^{\circ}C$ ) of Demonstration Amplifier

| Parameter        | 2.5 GHz | 2.6 GHz | 2.7 GHz | Units |
|------------------|---------|---------|---------|-------|
| Gain             | 16.7    | 16.4    | 16.2    | dB    |
| Output Power     | 94      | 87      | 83      | W     |
| Drain Efficiency | 69      | 69      | 64      | %     |

Note: Measured in the CGHV27060MP-AMP1 amplifier circuit, under pulse width 100µs, 10% duty cycle, P<sub>IN</sub> = 33 dBm.

## Typical Performance Over 2.5 - 2.7 GHz ( $T_c = 25^{\circ}C$ ) of Demonstration Amplifier

| Parameter        | 2.5 GHz | 2.6 GHz | 2.7 GHz | Units |
|------------------|---------|---------|---------|-------|
| Gain             | 18.4    | 18.2    | 17.6    | dB    |
| ACLR             | -33.2   | -34.5   | -35.8   | dBc   |
| Drain Efficiency | 33      | 33      | 32      | %     |

Note: Measured in the CGHV27060MP-AMP1 amplifier circuit, under WCDMA 3GPP test model 1, 64 DPCH, 45% clipping, PAR = 7.5 dB @ 0.01% probability on CCDF,  $V_{DD}$  = 50 V,  $I_{DS}$  = 125 mA,  $P_{AVE}$  = 41.5 dBm

#### **Features - Pulsed**

- 16.5 dB Gain at Pulsed P<sub>SAT</sub>
- 70% Efficiency at Pulsed P<sub>SAT</sub>
- 85 W at Pulsed P<sub>SAT</sub>

#### Features - Linear

- 18 dB Gain at  $P_{AVE} = 14 W$
- -35 dBc ACLR at P<sub>AVE</sub> = 14 W
- 33% Efficiency at P<sub>AVE</sub> = 14 W
- High Degree of DPD Correction Can be Applied

#### Listing of Available Hardware Application Circuits / Demonstration Circuits

| Application Circuit | Operating Frequency | Amplifier Class | <b>Operating Voltage</b> |
|---------------------|---------------------|-----------------|--------------------------|
| CGHV27060MP-AMP1    | 2.5 - 2.7 GHz       | Class A/B       | 50 V                     |
| CGHV27060MP-AMP3    | 0.8 - 2.7 GHz       | Class A/B       | 50 V                     |
| CGHV27060MP-AMP4    | 0.1 - 1.0 GHz       | Class A/B       | 45 V                     |



#### Large Signal Models Available for ADS and MWO



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



PN: CGHV27060MP



## Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

| Parameter                                              | Symbol            | Rating    | Units | Conditions                               |
|--------------------------------------------------------|-------------------|-----------|-------|------------------------------------------|
| Drain-Source Voltage                                   | V <sub>DSS</sub>  | 150       | M     | 25°C                                     |
| Gate-to-Source Voltage                                 | V <sub>GS</sub>   | -10, +2   | V     | 25 C                                     |
| Storage Temperature                                    | T <sub>STG</sub>  | -65, +150 | °C    |                                          |
| Operating Junction Temperature                         | T٦                | 225       | Ľ     |                                          |
| Maximum Forward Gate Current                           | I <sub>GMAX</sub> | 10.4      | mA    | - 25°C                                   |
| Maximum Drain Current <sup>1</sup>                     | I <sub>DMAX</sub> | 6.3       | А     | 25°C                                     |
| Soldering Temperature <sup>2</sup>                     | Ts                | 245       | °C    |                                          |
| Thermal Resistance, Junction to Case <sup>3</sup>      | Р                 | 2.6       | °C/W  | 85°C, P <sub>DISS</sub> = 52 W (CW)      |
| Thermal Resistance Pulsed 10%, 100µs, Junction to Case | R <sub>θJC</sub>  | 1.95      | C/W   | 85°C, P <sub>DISS</sub> = 62W, 100µs/10% |
| Case Operating Temperature⁴                            | Tc                | -40, +150 | °C    |                                          |

Notes:

<sup>1</sup> Current limit for long term, reliable operation

<sup>2</sup> Refer to the Application Note on soldering

<sup>3</sup> Measured for the CGHV27060MP

<sup>4</sup> See also, the Power Dissipation De-rating Curve on Page 12

## Electrical Characteristics (T<sub>c</sub> = 25°C)

| Characteristics                                        | Symbol                                                                           | Min. | Тур. | Max. | Units           | Conditions                                                                                                           |
|--------------------------------------------------------|----------------------------------------------------------------------------------|------|------|------|-----------------|----------------------------------------------------------------------------------------------------------------------|
| DC Characteristics <sup>1</sup>                        | С                                                                                |      |      | с    |                 |                                                                                                                      |
| Gate Threshold Voltage                                 | $V_{GS(th)}$                                                                     | -3.8 | -3.0 | -2.3 | V               | $V_{DS} = 10 \text{ V}, \text{ I}_{D} = 10.4 \text{ mA}$                                                             |
| Gate Quiescent Voltage                                 | $V_{\text{GS}(Q)}$                                                               | —    | -2.7 | —    | V <sub>DC</sub> | $V_{DS} = 50 \text{ V}, \text{ I}_{D} = 125 \text{ mA}$                                                              |
| Saturated Drain Current <sup>2</sup>                   | I <sub>DS</sub>                                                                  | 6.8  | 9.7  | —    | А               | $V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$                                                                     |
| Drain-Source Breakdown Voltage                         | V <sub>BR</sub>                                                                  | 125  | _    | —    | V <sub>DC</sub> | V <sub>GS</sub> = -8 V, I <sub>D</sub> = 10.4 mA                                                                     |
| RF Characteristics <sup>4</sup> (T <sub>c</sub> = 25°C | RF Characteristics⁴ (T <sub>c</sub> = 25°C, F₀ = 2.5 GHz unless otherwise noted) |      |      |      |                 |                                                                                                                      |
| Output Power <sup>3</sup>                              | Pout                                                                             | -    | 95   | _    | W               | V = 50 V L = 125  mA D = 25  dDm                                                                                     |
| Pulsed Drain Efficiency <sup>3</sup>                   | η                                                                                | _    | 64   | _    | %               | $V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 125 \text{ mA}, \text{ P}_{IN} = 35 \text{ dBm}$                            |
| Gain <sup>3</sup>                                      | G                                                                                | _    | 18.3 | _    | dB              | $V_{DD} = 50 \text{ V}, I_{DQ} = 125 \text{ mA}, P_{IN} = 10 \text{ dBm}$                                            |
| Output Mismatch Stress <sup>3</sup>                    | VSWR                                                                             | _    | _    | 10:1 | Ψ               | No damage at all phase angles, $V_{DD} = 50 \text{ V}$ , $I_{DQ} = 125 \text{ mA}$ , $P_{OUT} = 60 \text{ W}$ Pulsed |
| Dynamic Characteristics                                |                                                                                  |      |      |      |                 |                                                                                                                      |
| Input Capacitance⁵                                     | C <sub>GS</sub>                                                                  | _    | 15.3 | -    |                 |                                                                                                                      |
| Output Capacitance⁵                                    | C <sub>DS</sub>                                                                  | —    | 4.7  | —    | pF              | $V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$                                                    |
| Feedback Capacitance                                   | C <sub>GD</sub>                                                                  | _    | 0.5  | _    |                 |                                                                                                                      |

Notes:

<sup>1</sup> Measured on wafer prior to packaging

<sup>2</sup> Scaled from PCM data

 $^3$  Pulse Width = 100  $\mu s$  , Duty Cycle = 10 %

<sup>4</sup> Measured in CGHV27060MP-TB high volume test fixture

<sup>5</sup> Includes package

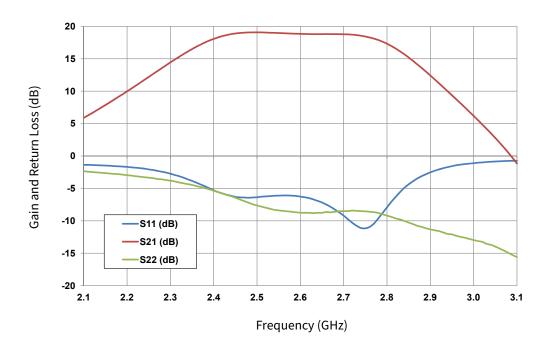
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

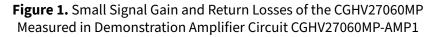
<sup>2</sup> 



#### Electrical Characteristics When Tested in CGHV27060MP-AMP1 Under WCDMA Modulation

| Characteristics                            | Symbol          | Тур. | Units | Conditions                                                                |
|--------------------------------------------|-----------------|------|-------|---------------------------------------------------------------------------|
| DC Characteristics <sup>1</sup>            |                 |      |       |                                                                           |
| Small Signal Gain at 2.6 GHz <sup>2</sup>  | G <sub>ss</sub> | 19.2 |       | $V_{DD} = 50 \text{ V}, I_{DQ} = 125 \text{ mA}, P_{IN} = 10 \text{ dBm}$ |
| Gain at 2.5 GHz <sup>2</sup>               |                 | 18.4 | dB    |                                                                           |
| Gain at 2.6 GHz <sup>2</sup>               | G               | 18.6 |       |                                                                           |
| Gain at 2.7 GHz <sup>2</sup>               |                 | 18.1 |       |                                                                           |
| ACLR at 2.5 GHz <sup>2</sup>               |                 |      |       |                                                                           |
| ACLR at 2.6 GHz <sup>2</sup>               | ACLR            | -35  | dBc   | $V_{DD}$ = 50 V, $I_{DQ}$ = 125 mA, $P_{IN}$ = 41.5 dBm                   |
| ACLR at 2.7 GHz <sup>2</sup>               |                 |      |       |                                                                           |
| Drain Efficiency at 2.5 GHz <sup>2,3</sup> |                 | 32   |       |                                                                           |
| Drain Efficiency at 2.6 GHz <sup>2,3</sup> | η               | 33   | %     |                                                                           |
| Drain Efficiency at 2.7 GHz <sup>2,3</sup> |                 | 31   | ]     |                                                                           |


Notes:

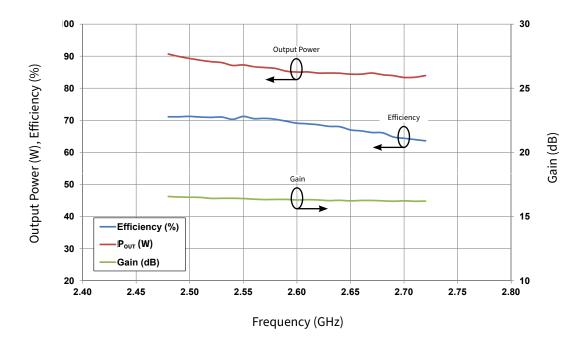

<sup>1</sup> Measured in CGHV27060MP-AMP1 Application Circuit

<sup>2</sup> Single Carrier WCDMA, 3GPP Test Model 1, 64 DPCH, 45% Clipping, PAR = 7.5 dB @ 0.01% Probability on CCDF

<sup>3</sup> Drain Efficiency =  $P_{OUT} / P_{DC}$ 

## Typical Performance in Application Circuit CGHV27060MP-AMP1






<sup>3</sup> MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

4



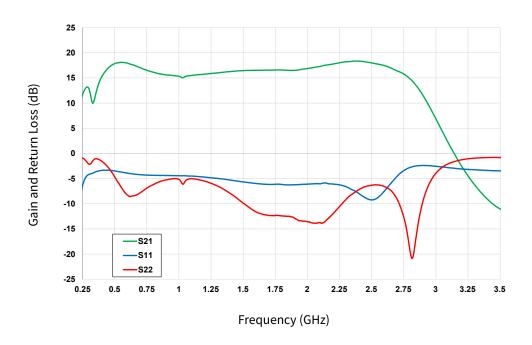


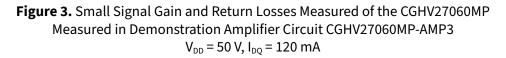


**Figure 2.** Gain, Output Power, and Drain Efficiency under 100µs Pulse Width, 10% Duty Cycle for the CGHV27060MP Measured in Demonstration Amplifier Circuit CGHV27060MP-AMP1

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 4.2, 2022-12-2




#### Electrical Characteristics When Tested in CGHV27060MP-AMP3, MILCOM


| Characteristics                                                                                                | Symbol | Тур. | Max. | Units | Conditions                                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------|--------|------|------|-------|----------------------------------------------------------------------------------------------------------------|--|
| RF Characteristics <sup>1</sup> (T <sub>c</sub> = 25°C, F <sub>0</sub> = 0.8 - 2.7 GHz unless otherwise noted) |        |      |      |       |                                                                                                                |  |
| Gain                                                                                                           | G      | 16.5 | _    | dB    | $V_{DD} = 50 \text{ V}, I_{DQ} = 120 \text{ mA}, P_{IN} = 0 \text{ dBm}$                                       |  |
| Output Power                                                                                                   | Ρουτ   | 48.5 | _    | dBm   | $V = E0 V L = 120 \text{ m} \Lambda D = 27 \text{ d} \text{Pm}$                                                |  |
| Drain Efficiency                                                                                               | η      | 60   | -    | %     | $V_{DD} = 50 \text{ V}, \text{ I}_{DQ} = 120 \text{ mA}, \text{ P}_{IN} = 37 \text{ dBm}$                      |  |
| Output Mismatch Stress                                                                                         | VSWR   | _    | 3:1  | Ψ     | No damage at all phase angles, $V_{DD} = 50 \text{ V}$ , $I_{DQ} = 120 \text{ mA}$ , $P_{IN} = 37 \text{ dBm}$ |  |

Note:

<sup>1</sup>Measured in CGHV27060MP-AMP3 Application Circuit

## Typical Performance in Application Circuit CGHV27060MP-AMP3, MILCOM





MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit:

5

6



# Typical Performance in Application Circuit CGHV27060MP-AMP3

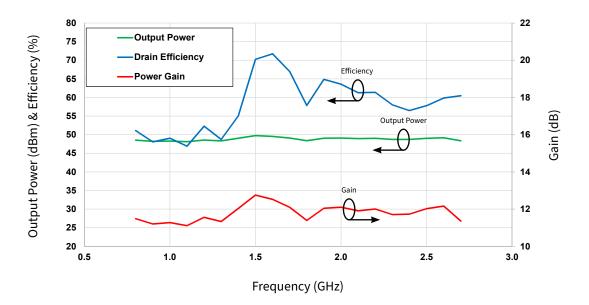
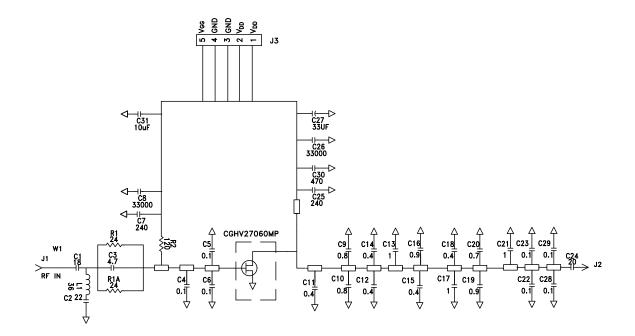
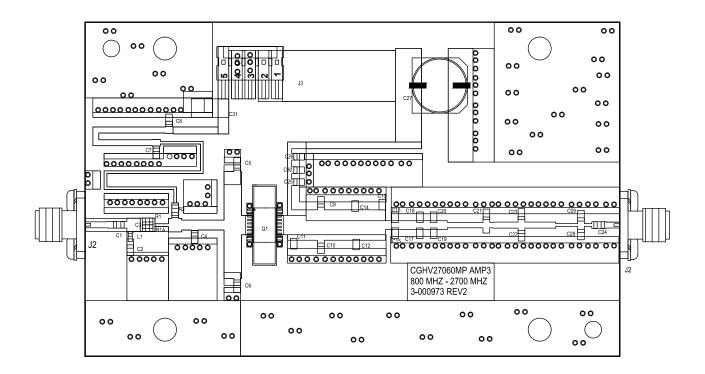




Figure 4. Power, Drain Efficiency and Gain vs Frequency of CGHV27060MP-AMP3  $P_{IN} = 37 \text{ dBm}, V_{DD} = 50 \text{ V}, I_{DQ} = 120 \text{ mA}$ 


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 4.2, 2022-12-2



## CGHV27060MP-AMP3 Demonstration Amplifier Circuit Schematic



## CGHV27060MP-AMP3 Demonstration Amplifier Circuit Outline



7 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

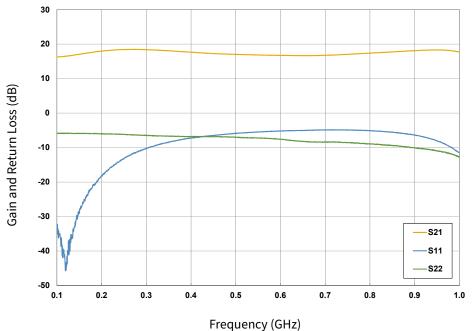


## CGHV27060MP-AMP3 Bill of Materials

| Designator                   | Description                                                    | Qty |
|------------------------------|----------------------------------------------------------------|-----|
| C1                           | CAP, 18pF, 5%, 0805, ATC                                       | 1   |
| C2                           | CAP, 22pF, 5%, 0805, ATC                                       | 1   |
| С3                           | CAP, 4.7pF, 5%, 0805, ATC                                      | 1   |
| C4,C5,C6, C22, C23, C28, C29 | CAP, 0.1pF, 5%, 0805, ATC                                      | 7   |
| C7, C25                      | CAP, 240pF, 5%, 0805, ATC                                      | 2   |
| C8,C26                       | CAP, 33000pF, 0805, 100V, X7R                                  | 2   |
| C16,C19,                     | CAP, 0.9pF, 5%, 0805, ATC                                      | 2   |
| C9, C10                      | CAP, 0.8pF, 5%, 0805, ATC                                      | 2   |
| C11,C12,C14,C15,C18          | CAP, 0.4pF, 5%, 0805, ATC                                      | 5   |
| C13,C17,C21                  | CAP, 1pF, 5%, 0805, ATC                                        | 3   |
| C24                          | CAP, 20pF, 5%, 0805, ATC                                       | 1   |
| C30                          | CAP, 470pF, 5%, 0603, X7R                                      | 1   |
| C27                          | САР, 33μF                                                      | 1   |
| C31                          | CAP, 10µF, 16V, TANTALUM                                       | 1   |
| C20                          | CAP 0.7pF                                                      | 1   |
| L1                           | IND, 36nH, 603                                                 | 1   |
| R1,R1A                       | RES, 24 Ohms, 805 IMS                                          | 1   |
| R2                           | RES, 120 Ohms, 0805                                            | 1   |
| -                            | PCB, RO4350, CGHV27060MP Applications Board, 4" X 2.5" X 0.02" | 1   |
| -                            | BASEPLATE, Cu, 4" X 2.5" X 0.5"                                | 1   |
| -                            | 2-56 SOC HD SCREW 1/4 SS                                       | 4   |
| -                            | #2 SPLIT LOCKWASHER SS                                         | 4   |
| J1,J2                        | CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL | 2   |
| J3                           | HEADER RT>PLZ .1CEN LK 5POS                                    | 1   |
| Q1                           | Transistor CGHV27060MP                                         | 1   |

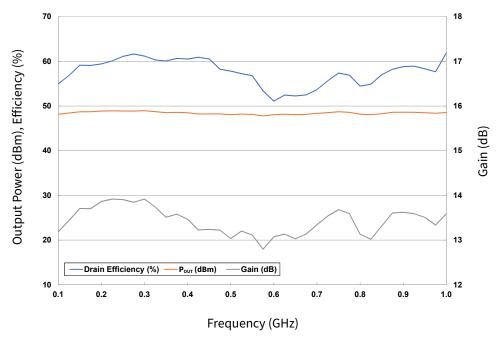
## Electrical Characteristics When Tested in CGHV27060MP-AMP4, MILCOM

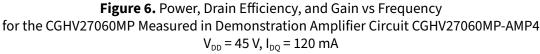
| Characteristics                                                                                       | Symbol | Тур. | Max. | Units | Conditions                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------|--------|------|------|-------|-------------------------------------------------------------------------------------------------------------|--|
| RF Characteristics <sup>1</sup> ( $T_c = 25^{\circ}C$ , $F_0 = 0.1 - 1.0$ GHz unless otherwise noted) |        |      |      |       |                                                                                                             |  |
| Small Signal Gain                                                                                     | G      | 16.5 | _    | dB    | $V_{DD} = 45 \text{ V}, I_{DQ} = 120 \text{ mA}$                                                            |  |
| Output Power                                                                                          | Pout   | 47.8 | -    | dBm   | $V = 4\Gamma V = 120 \text{ mA} \text{ D} = 2\Gamma \text{ d}\text{Dm}$                                     |  |
| Drain Efficiency                                                                                      | η      | 51.1 | _    | %     | $V_{DD} = 45 \text{ V}, \text{ I}_{DQ} = 120 \text{ mA}, \text{ P}_{IN} = 35 \text{ dBm}$                   |  |
| Output Mismatch Stress                                                                                | VSWR   | _    | 3:1  | Ψ     | No damage at all phase angles,<br>$V_{DD} = 45 \text{ V}, I_{DQ} = 120 \text{ mA}, P_{IN} = 35 \text{ dBm}$ |  |


Note:

<sup>1</sup> Measured in CGHV27060MP-AMP4 Application Circuit

<sup>8</sup> MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit:

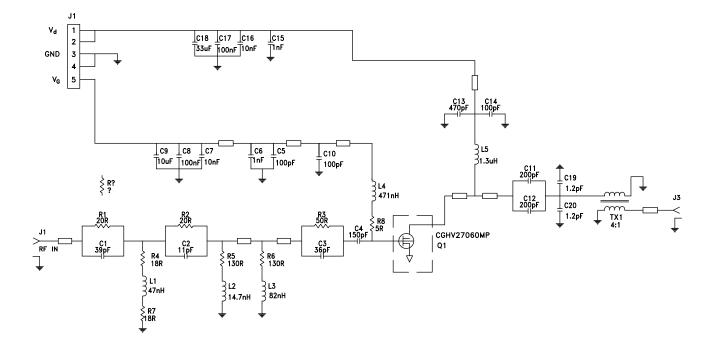




## Typical Performance in Application Circuit CGHV27060MP-AMP4, MILCOM

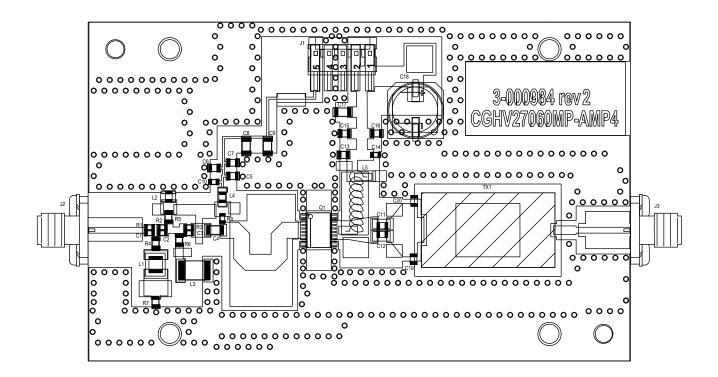


Frequency (GHZ)

Figure 5. Small Signal Gain and Return Losses of the CGHV27060MP Measured in Demonstration Amplifier Circuit CGHV27060MP-AMP4  $V_{DD}$  = 45 V,  $I_{DQ}$  = 120 mA







9 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



## CGHV27060MP-AMP4 Demonstration Amplifier Circuit Schematic



#### CGHV27060MP-AMP4 Demonstration Amplifier Circuit Outline



10 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u>



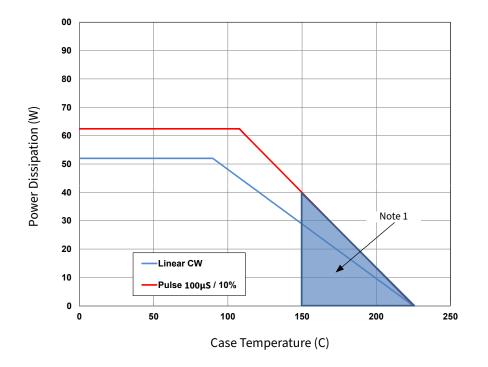
## CGHV27060MP-AMP4 Bill of Materials

| Designator | Description                                             | Qty |
|------------|---------------------------------------------------------|-----|
| R4,7       | RES, 16W, 0805, 2%, 18 OHMS, IMS                        | 2   |
| R1,2       | RES, 13W, 0603, 5%, 20 OHMS, IMS                        | 2   |
| R3         | RES, 13W, 0603,5%, 50 OHMS, IMS                         | 1   |
| R5, 6      | RES, 25W, 0805, 5%, 130 OHMS, IMS                       | 2   |
| C19, C20   | CAP, 1.2pF, +/-0.1pF, 0805, ATC600F                     | 2   |
| C2         | CAP, 11pF, +/-2%, 0603, ATC600S                         | 1   |
| С3         | CAP, 36pF, +/-2%, 0603, ATC600S                         | 1   |
| C1         | CAP, 39pF, +/-2%, 0603, ATC600S                         | 1   |
| C10,14     | CAP, 100pF, +/-5%, 0603, 100V, COG                      | 2   |
| C4         | CAP, 150pF, +/-5%, ATC800B                              | 1   |
| C11, 12    | CAP, 200pF, +/-5%, 0805, ATC600F                        | 2   |
| C5, 13     | CAP, 470pF, +/-5%, 0805, 100V, X7R                      | 2   |
| C6, 15     | CAP, 1nF, 0805, 100V, X7R                               | 2   |
| C7, 16     | CAP, 10nF, 0805, 100V, X7R                              | 2   |
| C8, 17     | CAP, 100nF, 1206, 100V, X7R                             | 2   |
| C9         | CAP, 10µF, 10%, 1206, 16V, X5R                          | 1   |
| C18        | CAP, 33µF, 20%, F CASE, 63V                             | 1   |
| L2         | IND, 14.7nH, 2% Air Core, Coilcraft                     | 1   |
| L1         | IND, 47nH, 5% Air Core, Coilcraft                       | 1   |
| L3         | IND, 82nH, 5% Air Core, Coilcraft                       | 1   |
| L4         | IND, 471nH, 5%, 0805 Chip Inductor, Coilcraft           | 1   |
| -          | Copper Plate                                            | 1   |
| J2,J3      | CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST | 2   |
| -          | PCB, Rogers RO4350B 20mils 1oz.Cu 101x64mm              | 1   |
| -          | BASEPLATE, 4.00 X 2.50 X .49" modified                  | 1   |
| J1         | HEADER RT>PLZ .1CEN LK 5POS                             | 1   |
| _          | 2-56 SOC HD SCREW 1/4 SS                                | 4   |
| -          | #2 SPLIT LOCKWASHER SS                                  | 4   |
| TX1        | Transformer, 30-1000 MHz SMD, IPP-5014                  | 1   |
| Q1         | Transistor CGHV27060MP                                  | 1   |

## **Electrostatic Discharge (ESD) Classifications**

| Parameter           | Symbol | Class | <b>Classification Level</b>    | Test Methodology    |
|---------------------|--------|-------|--------------------------------|---------------------|
| Human Body Model    | НВМ    | TBD   | ANSI/ESDA/JEDEC JS-001 Table 3 | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | TBD   | ANSI/ESDA/JEDEC JS-002 Table 3 | JEDEC JESD22 C101-C |

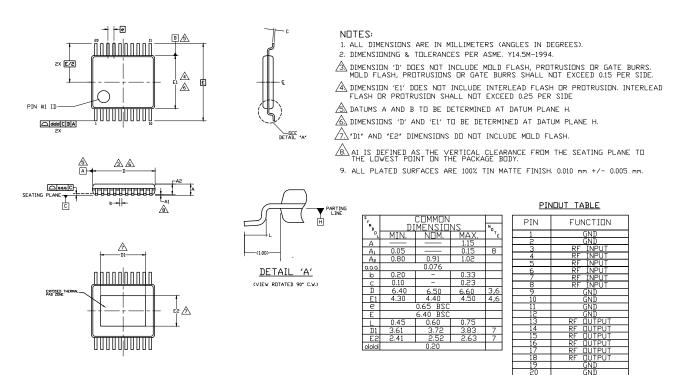
## **Moisture Sensitivity Level (MSL) Classification**


| Parameter                  | Symbol | Level         | Test Methodology   |
|----------------------------|--------|---------------|--------------------|
| Moisture Sensitivity Level | MSL    | 3 (168 hours) | IPC/JEDEC J-STD-20 |

<sup>11</sup> MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 4.2, 2022-12-2 For further information and support please visit:

## CGHV27060MP



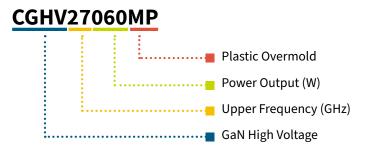

## CGHV27060MP Power Dissipation De-rating Curve



#### Note:

<sup>1</sup> Area exceeds Maximum Case Temperature (See Page 2).

## Product Dimensions CGHV27060MP (4.4 mm 20-Lead Package)




12 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>



#### **Part Number System**



#### Table 1.

| Parameter                    | Value | Units |
|------------------------------|-------|-------|
| Upper Frequency <sup>1</sup> | 2.7   | GHz   |
| Power Output                 | 60    | W     |
| Package                      | MP    | _     |

Note:

<sup>1</sup> Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

#### Table 2.

| Character Code | Code Value                     |  |
|----------------|--------------------------------|--|
| A              | 0                              |  |
| В              | 1                              |  |
| С              | 2                              |  |
| D              | 3                              |  |
| E              | 4                              |  |
| F              | 5                              |  |
| G              | 6                              |  |
| н              | 7                              |  |
| J              | 8                              |  |
| К              | 9                              |  |
| Examples       | 1A = 10.0 GHz<br>2H = 27.0 GHz |  |

13 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u>



## **Product Ordering Information**

| Order Number     | Description                        | Unit of Measure | Image        |
|------------------|------------------------------------|-----------------|--------------|
| CGHV27060MP      | GaN HEMT                           | Each            | CGH1/27050MP |
| CGHV27060MP-AMP1 | Test board with GaN HEMT installed | Each            |              |
| CGHV27060MP-AMP3 | Test board with GaN HEMT installed | Each            |              |
| CGHV27060MP-AMP4 | Test board with GaN HEMT installed | Each            |              |



Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

<sup>15</sup> MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support