


## 25 W, DC - 15 GHz, 40 V, GaN HEMT

#### Description

The CGHV1F025S is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities. The device can be deployed for L-, S-, C-, X- and Ku-Band amplifier applications. The datasheet specifications are based on a X-Band (8.9 - 9.6 GHz) amplifier. The CGHV1F025S operates on a 40 volt rail circuit while housed in a 3mm x 4mm, surface mount, dual-flat-no-lead (DFN) package. Under reduced power, the transistor can operate below 40V to as low as 20V V<sub>DD</sub>, maintaining high gain and efficiency.



Package Type: 3x4 DFN PN: CGHV1F025S

#### Typical Performance 8.9 - 9.6 GHz ( $T_c = 25^{\circ}C$ ), 40 V

| Parameter                                   | 8.9 GHz | 9.2 GHz | 9.4 GHz | 9.6 GHz | Units |
|---------------------------------------------|---------|---------|---------|---------|-------|
| Output Power @ P <sub>IN</sub> = 37 dBm     | 24      | 29      | 27      | 25      | W     |
| Drain Efficiency @ P <sub>IN</sub> = 37 dBm | 43.5    | 48.5    | 48      | 46      | %     |
| Gain @ $P_{IN} = 0 \text{ dBm}$             | 10.7    | 11.6    | 11.3    | 11.1    | dB    |

Note:

Measured in the CGHV1F025S-AMP1 application circuit. Pulsed 100µs 10% duty

#### Features

- Up to 15 GHz Operation
- 25 W Typical Output Power
- 11 dB Gain at 9.4 GHz
- Application circuit for 8.9 9.6 GHz



Large Signal Models Available for ADS and MWO

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.



#### Absolute Maximum Ratings (not simultaneous) at 25°C

| Parameter                                 | Symbol            | Rating    | Units | Conditions |
|-------------------------------------------|-------------------|-----------|-------|------------|
| Drain-Source Voltage                      | V <sub>DSS</sub>  | 120       |       | 25%        |
| Gate-to-Source Voltage                    | V <sub>GS</sub>   | -10, +2   | V     | 25°C       |
| Storage Temperature                       | T <sub>STG</sub>  | -65, +150 | °C    |            |
| Operating Junction Temperature            | TJ                | 225       |       |            |
| Maximum Forward Gate Current              | I <sub>GMAX</sub> | 4.8       | mA    | 25%        |
| Maximum Drain Current <sup>1</sup>        | I <sub>DMAX</sub> | 2         | A     | – 25°C     |
| Soldering Temperature <sup>2</sup>        | Ts                | 245       | 0.0   |            |
| Case Operating Temperature <sup>3,4</sup> | Tc                | -40, +150 | °C    |            |
| Thermal Resistance, Junction to Case⁵     | R <sub>θJC</sub>  | 3.4       | °C/W  | 85°C       |

Notes:

<sup>1</sup> Current limit for long term, reliable operation

<sup>2</sup> Refer to the Application Note on soldering

<sup>3</sup> Simulated at P<sub>DISS</sub> = 24 W

<sup>4</sup> T<sub>c</sub> = Case temperature for the device. It refers to the temperature at the ground tab underneath the package. The PCB will add additional thermal resistance <sup>5</sup> Pulsed (100μs, 10% Duty). Rth for the reference design using a 10 mil Rogers 5880 PCB with 31 (Ø13 mil) Vias would be 3.6°C/W. For CW

operation the Rth numbers increase to 5°C/W for just the device, and 7.3°C/W including the board

#### **Electrical Characteristics**

| Characteristics                                                                                  | Symbol               | Min. | Тур. | Max. | Units           | Conditions                                                                                |  |
|--------------------------------------------------------------------------------------------------|----------------------|------|------|------|-----------------|-------------------------------------------------------------------------------------------|--|
| DC Characteristics <sup>1</sup>                                                                  |                      |      |      |      |                 | •<br>•                                                                                    |  |
| Gate Threshold Voltage                                                                           | V <sub>GS(th)</sub>  | -3.8 | -3.0 | -2.3 | N               | $V_{DS} = 10 \text{ V}, \text{ I}_{D} = 4.8 \text{ mA}$                                   |  |
| Gate Quiescent Voltage                                                                           | V <sub>GS(Q)</sub>   | _    | -2.7 | _    | V <sub>DC</sub> | $V_{DS} = 40 \text{ V}, I_{D} = 120 \text{ mA}$                                           |  |
| Saturated Drain Current <sup>2</sup>                                                             | I <sub>DS</sub>      | 3.5  | 4.8  | _    | A               | $V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$                                          |  |
| Drain-Source Breakdown Voltage                                                                   | V <sub>(BR)DSS</sub> | 100  | _    | _    | V <sub>DC</sub> | $V_{GS} = -8 V$ , $I_D = 4.8 mA$                                                          |  |
| RF Characteristics <sup>3</sup> ( $T_c = 25^{\circ}C$ , $F_0 = 5.55$ GHz unless otherwise noted) |                      |      |      |      |                 |                                                                                           |  |
| Gain                                                                                             | G                    | _    | 15.1 | _    | dB              | $V_{DD} = 40 \text{ V}, \text{ I}_{DQ} = 120 \text{ mA}, \text{ P}_{IN} = 10 \text{ dBm}$ |  |
| Output Power <sup>4</sup>                                                                        | Pout                 | _    | 44.8 | _    | dBm             |                                                                                           |  |
| Drain Efficiency <sup>4</sup>                                                                    | η                    | _    | 51   | _    | %               | $V_{DD} = 40 \text{ V}, I_{DQ} = 120 \text{ mA}, P_{IN} = 33.5 \text{ dBm}$               |  |
| Output Mismatch Stress <sup>4</sup>                                                              | VSWR                 | _    | _    | 10:1 | Ψ               | No damage at all phase angles, $V_{DD}$ = 40 V, $I_{DQ}$ = 120 mA, $P_{IN}$ = 33.5 dBm    |  |
| Dynamic Characteristics                                                                          |                      |      |      |      |                 |                                                                                           |  |
| Input Capacitance                                                                                | C <sub>GS</sub>      | _    | 5.9  | —    |                 |                                                                                           |  |
| Output Capacitance                                                                               | C <sub>DS</sub>      | _    | 2    | _    | pF              | $V_{DS} = 40 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$                         |  |
| Feedback Capacitance                                                                             | C <sub>GD</sub>      | _    | 0.21 | _    |                 |                                                                                           |  |

Notes:

<sup>1</sup> Measured on wafer prior to packaging

<sup>2</sup> Scaled from PCM data

<sup>3</sup> Measured in production test fixture.

 $^4$  Pulsed 100 $\mu s,$  10% duty cycle

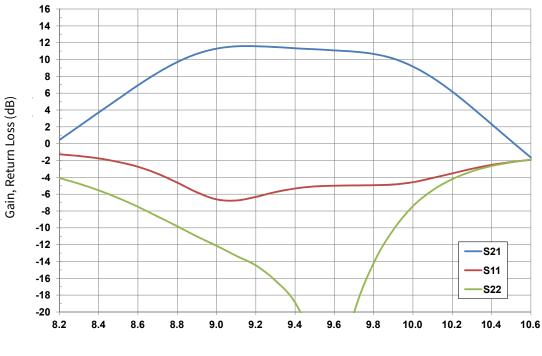
<sup>5</sup> Includes package

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

<sup>2</sup> 



#### **Electrical Characteristics When Tested in CGHV1F025S-AMP1**


| Characteristics                                                                                       | Symbol           | Тур. | Max. | Units | Conditions                                                                                       |  |
|-------------------------------------------------------------------------------------------------------|------------------|------|------|-------|--------------------------------------------------------------------------------------------------|--|
| RF Characteristics <sup>1</sup> ( $T_c = 25^{\circ}C$ , $F_0 = 8.9 - 9.6$ GHz unless otherwise noted) |                  |      |      |       |                                                                                                  |  |
| Gain                                                                                                  | G                | 11.6 | _    | dB    | $V_{DD}$ = 40 V, $I_{DQ}$ = 150 mA, $P_{IN}$ = 0 dBm                                             |  |
| Output Power <sup>2</sup>                                                                             | P <sub>OUT</sub> | 29   | -    | W     | $V_{DD} = 40 \text{ V}, \text{ I}_{DQ} = 150 \text{ mA}, \text{ P}_{\text{IN}} = 37 \text{ dBm}$ |  |
| Drain Efficiency <sup>2</sup>                                                                         | η                | 48.5 | _    | %     |                                                                                                  |  |
| Output Mismatch Stress <sup>2</sup>                                                                   | VSWR             | _    | 10:1 | Ψ     | V <sub>DS</sub> = 40 V, V <sub>GS</sub> = -8 V, P <sub>OUT</sub> = 25 W                          |  |

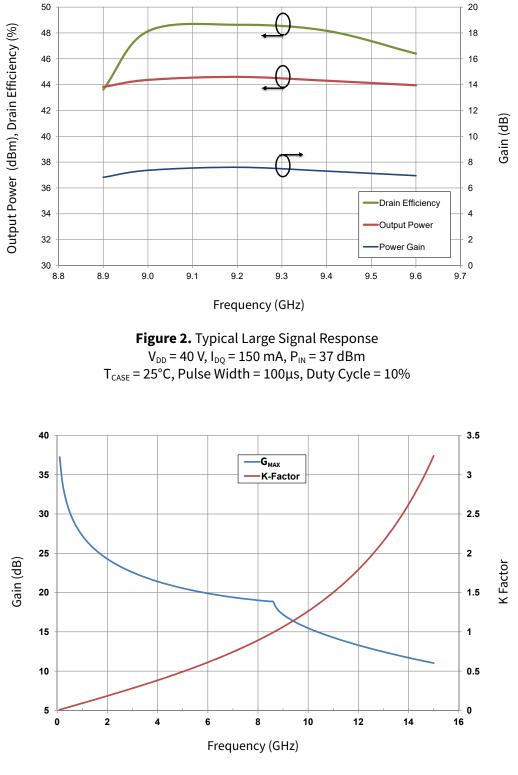
Notes:

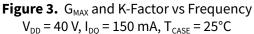
<sup>1</sup> Measured in CGHV1F025S-AMP1 Application Circuit

<sup>2</sup> Pulsed 100µs, 10% duty cycle

#### **Typical Performance - CGHV1F025S**




Frequency (GHz)


Figure 1. Typical Small Signal Response of CGHV1F025S-AMP1 Application Circuit  $V_{DD} = 40 \text{ V}, I_{DQ} = 150 \text{ mA}$ 

3 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 4.7, 2022-12-2

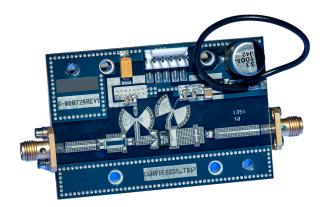


#### Typical Performance in Application Circuit CGHV1F025S-AMP1

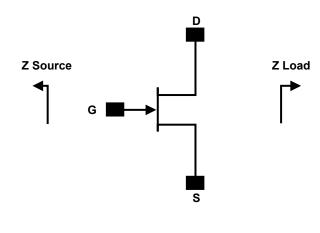




MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.


4




#### CGHV1F025S-AMP1 Application Circuit Bill of Material

| Designator | Description                         | Qty |
|------------|-------------------------------------|-----|
| R1         | RES, 100, OHM, +1/-1%, 1/16 W, 0603 | 2   |
| R2         | RES, 10, OHM, +1/-1%, 1/16 W, 0603  | 1   |
| C1, C2     | CAP, 1pF, ±0.1pF, 0603, ATC         | 3   |
| C3, C4     | CAP, 1.8pF, ±0.1pF, 0603, ATC       | 3   |
| C9, C10    | CAP, 0.6pF, ±0.1pF, 0603, ATC       | 1   |
| C5, C11    | CAP, 10pF, ±5%, 0603, ATC           | 1   |
| C6, C12    | CAP, 470pF, 5%, 100 V, 0603, X      | 2   |
| C7, C13    | CAP, 33000pF, 0805, 100V, X7R       | 1   |
| C14        | CAP, 1.0μF, 100V, 10%, X7R, 1210    | 3   |
| C8         | CAP, 10μF, 16V TANTALUM             | 3   |
| C15        | CAP, 33µF, 20%, G CASE              | 1   |
| J1, J2     | CONN, SMA, PANEL MOUNT JACK, FLANGE | 1   |
| J3         | HEADER RT>PLZ .1CEN LK 5POS         | 2   |
| Q1         | QFN TRANSISTOR CGHV1F025S           | 1   |
| W1         | CABLE, 18 AWG, 4.2                  | 1   |

#### CGHV1F025S-AMP1 Application Circuit



## Source and Load Impedances



| Frequency (GHz) | Z Source      | Z Load       |
|-----------------|---------------|--------------|
| 8.00            | 1.16 - j12.0  | 4.33 - j3.47 |
| 8.25            | 1.12 - j12.92 | 4.20 - j4.34 |
| 8.50            | 0.96 - j13.39 | 3.37 - j5.23 |
| 8.75            | 1.07 - j14.33 | 3.50 - j6.11 |
| 9.00            | 1.06 - j14.80 | 3.45 - j6.99 |
| 9.25            | 1.15 - j15.76 | 3.38 - j7.44 |
| 9.50            | 1.17 - j16.24 | 3.31 - j7.89 |
| 9.75            | 1.14 - j17.21 | 3.25 - j8.78 |
| 10.00           | 1.30 - j17.70 | 3.21 - j9.23 |

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

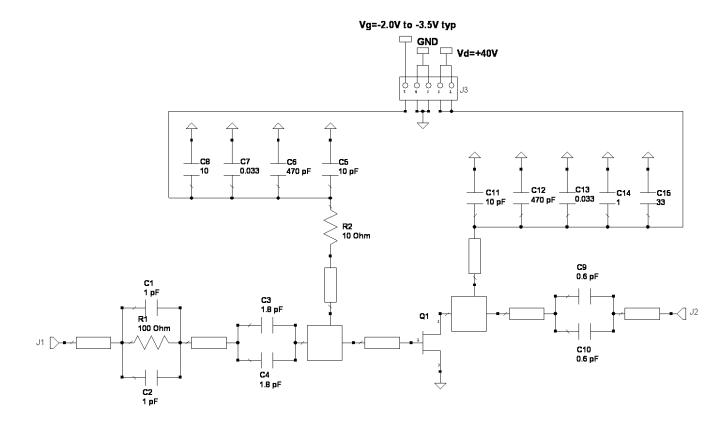
5

6

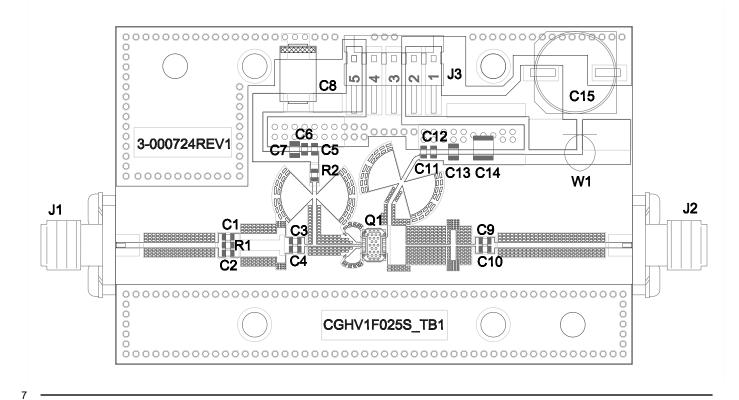


## **Electrostatic Discharge (ESD) Classifications**

| Parameter           | Symbol | Class | <b>Classification Level</b>    | Test Methodology    |
|---------------------|--------|-------|--------------------------------|---------------------|
| Human Body Model    | НВМ    | 1A    | ANSI/ESDA/JEDEC JS-001 Table 3 | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | С3    | ANSI/ESDA/JEDEC JS-002 Table 3 | JEDEC JESD22 C101-C |


#### **Moisture Sensitivity Level (MSL) Classification**

| Parameter                  | Symbol | Level         | Test Methodology   |
|----------------------------|--------|---------------|--------------------|
| Moisture Sensitivity Level | MSL    | 3 (168 hours) | IPC/JEDEC J-STD-20 |

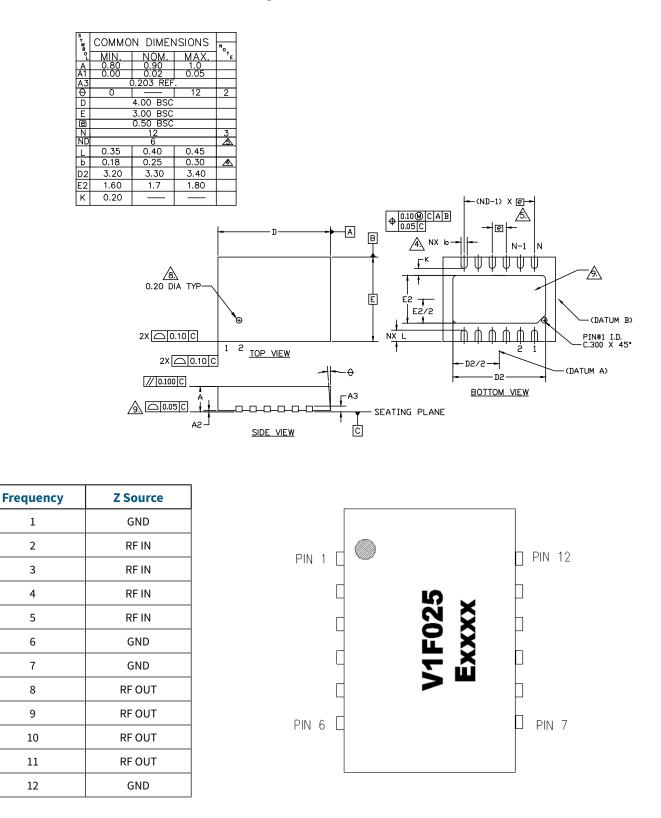

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 4.7, 2022-12-2



#### CGHV1F025S-AMP1 Application Circuit Schematic



## CGHV1F025S-AMP1 Application Circuit Outline

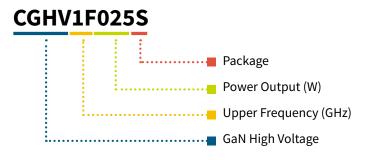



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.





## Product Dimensions CGHV1F025S (Package 3 x 4 DFN)




Note: Leadframe finish for 3x4 DFN package is Nickel/Palladium/Gold. Gold is the outer layer

8 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support



#### **Part Number System**



#### Table 1.

| Parameter                    | Value         | Units |
|------------------------------|---------------|-------|
| Upper Frequency <sup>1</sup> | 15.0          | GHz   |
| Power Output                 | 25            | W     |
| Package                      | Surface Mount | _     |

Note:

<sup>1</sup> Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

#### Table 2.

| Character Code | Code Value                     |  |
|----------------|--------------------------------|--|
| A              | 0                              |  |
| В              | 1                              |  |
| C              | 2                              |  |
| D              | 3                              |  |
| E              | 4                              |  |
| F              | 5                              |  |
| G              | 6                              |  |
| н              | 7                              |  |
| J              | 8                              |  |
| К              | 9                              |  |
| Examples       | 1A = 10.0 GHz<br>2H = 27.0 GHz |  |

9 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support



## **Product Ordering Information**

| Order Number   | Description                        | Unit of Measure | Image       |
|----------------|------------------------------------|-----------------|-------------|
| CGHV1F025S     | GaN HEMT                           | Each            | N 125 93 30 |
| CGHV1F025-AMP1 | Test board with GaN HEMT installed | Each            |             |



Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

<sup>11</sup> MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support