

CGHV14800

800 W, 960 - 1400 MHz, 50 V, GaN HEMT for L-Band Radar Systems

Description

The CGHV14800 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV14800 ideal for 960 - 1400 MHz pulsed L-Band radar amplifier applications, such as air traffic control (ATC) radar, weather radar, penetration radars, antimissile system radars, target tracking radars and long range survelliance radars. The GaN HEMT typically operates at 50 V, typically delivering > 65% drain efficiency. The GaN HEMT comes in a ceramic/metal flange package.

Package Type: 440117 PN: CGHV14800F

Typical Performance Over 1.2 - 1.4 GHz ($T_c = 25^{\circ}$ C) of Demonstration Amplifier

Parameter	1.2 GHz	1.25 GHz	1.3 GHz	1.35 GHz	1.4 GHz	Units
Output Power	1000	940	940	920	910	W
Gain	15.5	15.2	15.2	15.1	15.1	dB
Drain Efficiency	74	73	73	69	67	%

Note: Measured in the CGHV14800F-AMP amplifier circuit, under 100 μ secs pulse width, 5% duty cycle, P_{IN} = 44.5 dBm.

Features

- Reference design amplifier 1.2 1.4 GHz Operation
- 910 W Typical Output Power
- 14 dB Power Gain

- 70% Typical Drain Efficiency
- <0.3 dB Pulsed Amplitude Droop
- Internally input and output matched

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	150	W	25°C
Gate-to-Source Voltage	V_{GS}	-10, +2	V	25 C
Storage Temperature	T _{STG}	-65, +150	°C.	
Operating Junction Temperature	TJ	225	C	
Maximum Forward Gate Current	I _{GMAX}	132	mA	- 25°C
Maximum Drain Current ¹	I _{DMAX}	24	А	25°C
Maximum Duty Cycle	D	5	%	
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Pulsed Thermal Resistance, Junction to Case ³	R _{θJC}	0.16	°C/W	P _{DISS} = 664 W, 100μsec, 5%, 85°C
Case Operating Temperature ⁴	T _c	-40, +100	°C	P _{DISS} = 664 W, 100μsec, 5%

Notes

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹			71)	
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	.,	V _{DS} = 10 V, I _D = 132.8 mA
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	$V_{DS} = 50 \text{ V}, I_{D} = 800 \text{ mA}$
Saturated Drain Current ²	I _{DS}	86.3	123.5	_	Α	V _{DS} = 6.0 V, V _{GS} = 2.0 V
Drain-Source Breakdown Voltage	V_{BR}	125	_	_	V_{DC}	V _{GS} = -8 V, I _D = 132.8 mA
RF Characteristics ³ (T _c = 25°C	, F₀ = 1.3 GH	tz unles:	s otherw	ise note	d)	
Output Power at f = 1.2 GHz		804	977	_		
Output Power at f = 1.23 GHz	P _{out}	795	933	_	w	$V_{DD} = 50 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 44.5 \text{ dBm}$
Output Power at $f = 1.4 \text{GHz}$		750	912	_		
Drain Efficiency at f = 1.2 GHz		62	71	_		
Drain Efficiency at f = 1.23 GHz	η	63	71	_	%	
Drain Efficiency at f = 1.4 GHz		57	67	_		
Pulsed Amplitude Droop	D	_	-0.3	_	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 800 \text{ mA}$
Output Mismatch Stress	VSWR	_	_	9:1	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 800 \text{ mA}, P_{IN} = 44.5 \text{ dBm Pulsed}$
Dynamic Characteristics						
Input Capacitance	C _{GS}	_	326	_		
Output Capacitance	C _{DS}	-	643	-	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	C_GD	_	3.9	_		

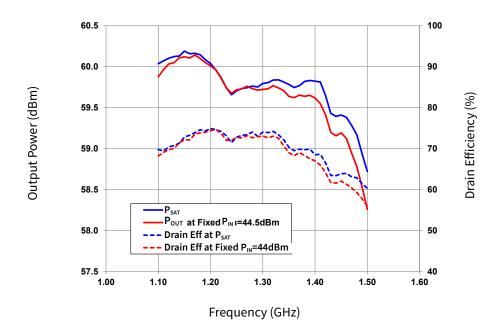
Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

³ Measured for the CGHV14800F-AMP

 $^{^{\}rm 4}$ See also, the Power Dissipation De-rating Curve on Page 7


¹ Measured on wafer prior to packaging

² Scaled from PCM data

³ Measured in CGHV14800F-AMP. Pulsed Width = 100µs, Duty Cycle = 5%.

Typical Pulsed Performance

Figure 1. Saturated Output Power and Drain Efficiency vs Frequency of the CGHV14800F in the CGHV14800F-AMP $V_{DD} = 50 \text{ V}, I_{DO} = 800 \text{ mA}, \text{Pulse Width} = 100 \mu\text{s}, \text{Duty Cycle} = 5\%$

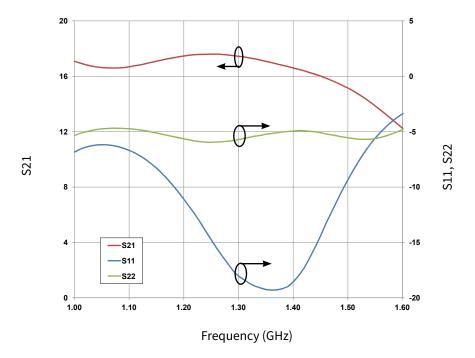
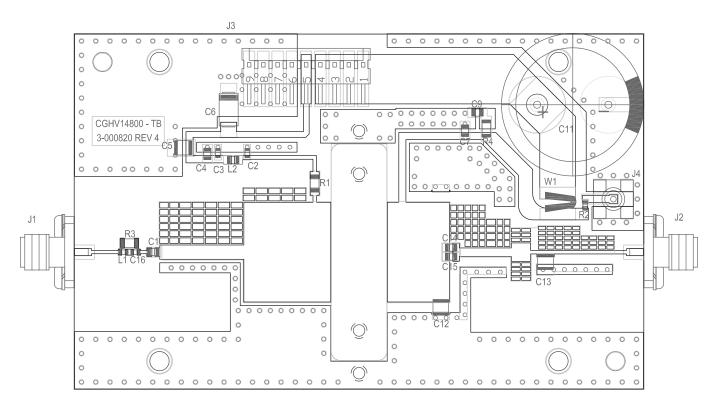
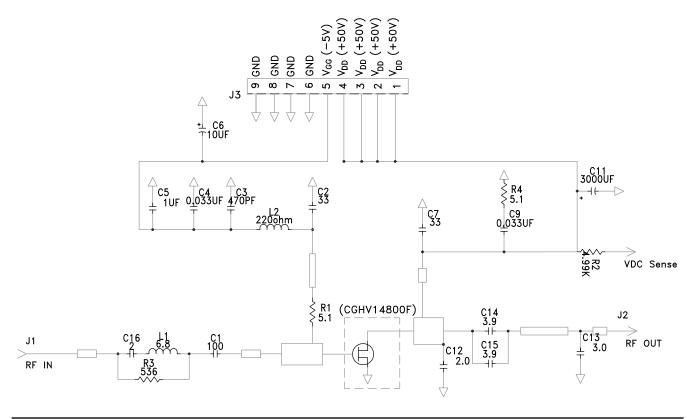


Figure 2. Small Signal Gain and Return Losses vs Frequency of the CGHV14800F in the CGHV14800F-AMP V_{DD} = 50 V, I_{DO} = 800 mA

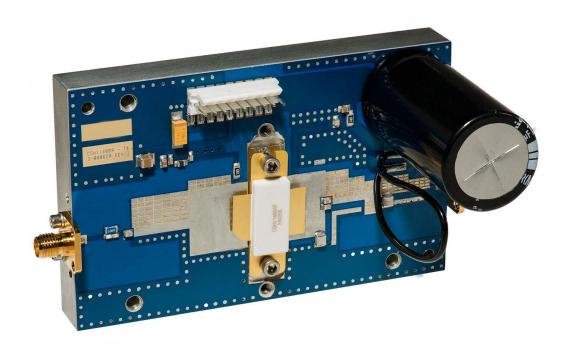
CGHV14800F-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
R2	RES, 1/16W, 0603, 1%, 4.99K OHMS	1
С3	CAP, 470pF, 5%, 100V, 0603, X7R, ROHS COMPLIANT	1
C5	CAP, 1.0μF, 100V, +/-10%, X7R, 1210	1
C11	CAP, 3300μF, +/-20%, 100V, ELECTROLYTIC, VR, RADIAL	1
C16	CAP, 2.0pF, +/-0.1pF, 0603, ATC	1
C2	CAP, 33pF, +/-5%, 0603, ATC	1
C4,C9	CAP, 33000pF, 0805, 100V, X7R	2
C1	CAP, 100pF +/- 5%, 250V, 0805, ATC 600F	1
C7	CAP, 33pF +/- 5%, 250V, 0805, ATC 600F	1
	PCB, TMM10i, 0.025" THK, CGHV14800F-TB	1
	BASEPLATE, AL, 4.00 X 2.50 X 0.49, ALTERNATE HOLE PATTERN	1
	2-56 SOC HD SCREW 1/4 SS	4
	#2 SPLIT LOCKWASHER SS	4
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
L1	INDUCTOR, CHIP, 6.8nH, 0603 SMT	1
W1	WIRE, BLACK, 18 AWG, EXTRUDED TFE TEFLON	1
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
C6	CAP 10μF 16V TANTALUM, 2312	1
R1,R4	RES,5.1 OHM, SMT, 1206, 125MW, 5%	2
R3	RES, 1/4W, 1206 1% 536 OHM	1
L2	IND, FERRITE, 220 OHM, 0805	1
C13	CAP, 3.0pF, ATC800B, +/-0.1pF	1
C12	CAP, 2.0pF, ATC800B, +/-0.1pF	1
C14,C15	CAP, 3.9pF, +/-0.1pF, 250V, 0805, ATC600F	2
Q1	CGHV14800F	1

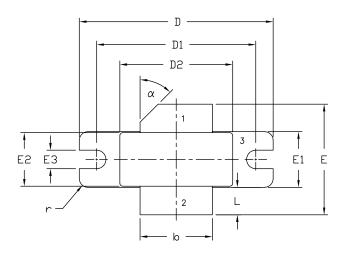
Electrostatic Discharge (ESD) Classifications

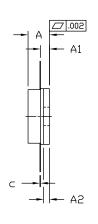

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	2	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

CGHV14800-AMP Demonstration Amplifier Circuit Outline



CGHV14800-AMP Demonstration Amplifier Circuit Schematic



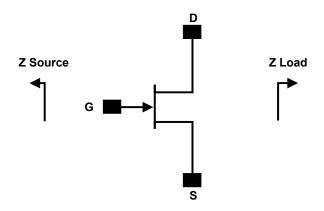


CGHV14800F-AMP Demonstration Amplifier Circuit

Product Dimensions CGHV14800F (Package Type — 440117)

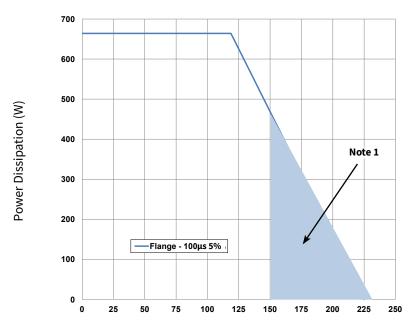
PIN 1. GATE 2. DRAIN

3. SOURCE


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

	INCHES		MILLIM	NOTES	
DIM	MIN	MAX	MIN	MAX	
Α	0.138	0.158	3.51	4.01	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.495	0.505	12.57	12.83	2x
С	0.003	0.006	0.08	0.15	
D	1.335	1.345	33.91	34.16	
D1	1.095	1.105	27.81	28.07	
D2	0.773	0.787	19.63	20.00	
E	0.745	0.785	18.92	19.94	
E1	0.380	0.390	9.65	9.91	
E2	0.365	0.375	9.72	9.53	
E3	0.123	0.133	3.12	3.38	
L	0.170	0.210	4.32	5.33	2×
r	0.06 TYP		0.06 TYP		4x
α	45° REF		45° REF		


Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
1000	0.51 - j1.44	1.44 - j0.76
1100	0.92 - j1.62	1.30 - j1.55
1200	1.42 - j1.60	1.17 - j1.69
1300	1.79 - j1.04	116 - j1.85
1400	1.44 - j0.46	1.08 - j1.99
1500	0.87 - j0.42	1.07 - j2.13
1600	0.52 - j0.66	1.00 - j2.36

Notes

CGHV14800F Power Dissipation De-rating Curve

Maximum Case Temperature (°C)

Note

 $^{^1}$ $\rm V_{DD}$ = 50 V, $\rm I_{DQ}$ = 800 mA in the 440117 package.

² Optimized for power gain, P_{SAT} and Drain Efficiency

¹ Area exceeds Maximum Case Operating Temperature (See Page 2)

Part Number System



Table 1.

Parameter	Value	Units
Upper Frequency ¹	1.4	GHz
Power Output	800	W
Туре	F = Flanged	_

Note:

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

Alpha characters used in frequency code indicate a value greater than
9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV14800F	GaN HEMT	Each	CGNYABOOF
CGHV14800F-AMP	Test board with GaN HEMT installed, 1.2 - 1.4 GHz	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.