

CGHV14650F Rev. V2

Features

- MACOM PURE CARBIDE™ Amplifier Series
- Suitable for pulse application
- Pulsed Operation: 630 W Output Power
- 260°C Reflow Compatible
- 50 V Operation
- 100% RF Tested
- RoHS* Compliant

Applications

- L– band pulsed radar application
- Avoinics –TACAN, DEM, IFF
- · General purpose amplification

Description

The CGHV14650F is a 630 W packaged amplifier fully matched to 50 Ohms at both input and output ports. Utilizing the high performance, 50 V, GaN on SiC production process, the CGHV14650F operates from 1.2–1.4 GHz, and typically achieves 630 W output power with 15.5 dB large signal gain and 65% drain efficiency under pulsed application.

Typical Performance:

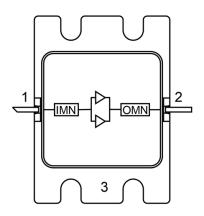
Measured under Evaluation Test Fixture¹ at $P_{IN} = 42$ dBm, 100 µs pulse width, 10% duty cycle.

• $V_{DS} = 50 \text{ V}$, $I_{DO} = 500 \text{ mA}$, $T_{C} = 25^{\circ}\text{C}$

Frequency (GHz)	Output Power (dBm)	Gain (dB)	η _D (%)
1.2	57.8	15.8	70
1.3	57.9	15.9	68
1.4	57.8	15.8	67

Performance values and curves in this data sheet were measured in this fixture.

Ordering Information²


Part Number	Package
CGHV14650F	Bulk Quantity
CGHV14650F-AMP	Sample Board

2. Shipped in trays

Functional Schematic

Pin Configuration

Pin#	Pin Name	Function
1	RF _{IN} / V _G	RF Input / Gate
2	RF _{OUT} / V _D	RF Output / Drain
3	Flange ³	Ground / Source

The flange on the package bottom must be connected to RF, DC and thermal ground.

CGHV14650F Rev. V2

RF Electrical Characteristics: $T_C = 25^{\circ}C$, $V_{DS} = 50$ V, $I_{DQ} = 500$ mA Note: Performance in MACOM Evaluation Test Fixture, 50 Ω system

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Output Power	Pulsed ⁵ , P _{IN} = 42 dBm 1.2 GHz 1.3 GHz 1.4 GHz	P _{OUT}	57.78 58.00 57.67	58.03 58.27 58.01	_	dBm
Drain Efficiency	Pulsed ⁵ , P _{IN} = 42 dBm 1.2 GHz 1.3 GHz 1.4 GHz		66 64 61	70 69 66	_	%
Large Signal Gain	Pulsed ⁵ , P _{IN} = 42 dBm 1.2 GHz 1.3 GHz 1.4 GHz	G _P	15.0 15.0 15.0	15.8 15.9 15.8	_	dB
Small Signal Gain	CW, 1.2 - 1.4 GHz, P _{IN} = -20 dBm	S21	_	18.0	_	dB
Input Return Loss	CW, 1.2 - 1.4 GHz, P _{IN} = -20 dBm	S11	_	-7.8	_	dB
Output Return Loss	CW, 1.2 - 1.4 GHz, P _{IN} = -20 dBm	S22	_	-5.8	_	dB
Ruggedness: Output Mismatch	Pulsed ⁵ , All phase angles	Ψ VSWR = 2.5:1, No Damage, Sta		Stable		

Note: Final testing and screening for all amplifier sales is performed using the CGHV14650F-AMP

DC Electrical Characteristics T_A = 25°C

Parameter	Test Conditions	Min.	Тур.	Max.	Units
Gate Threshold Voltage (V _T)	$V_{DS} = 10 \text{ V}, I_D = 83.6 \text{ mA}$	-3.8	-3.0	-2.3	V
Gate Quiescent Voltage (V _{GSQ})	$V_{DS} = 50 \text{ V}, I_{D} = 500 \text{ mA}$	_	-2.7	_	V
Saturated Drain Current ⁶ (I _{DSAT})	$V_{DS} = 6 \text{ V}, V_{GS} = 2 \text{ V}$	62.7	75.5	_	Α
Drain-Source Breakdown Voltage (V _{GSQ})	V_{GS} = -8 V, I_D = 83.6 mA	125	_		V

^{6.} Measured on wafer prior to packaging

^{5.} Pulse details: 100 μs pulse width, 10% Duty Cycle.

^{7.} Scaled from PCM data

CGHV14650F Rev. V2

Absolute Maximum Ratings^{8,9,10,11}

Parameter	Absolute Maximum		
Drain Source Voltage (V _{DS})	150 V		
Gate Source Voltage (V _{GS})	-8 to 2 V		
Gate Current (I _G)	83.6 mA		
Storage Temperature Range	-65°C to +150°C		
Case Operating Temperature Range	-40°C to +65°C		
DC Drain Current	14 A		
Channel Operating Temperature Range (T _{CH})	-40°C to +225°C		
Absolute Maximum Channel Temperature	+225°C		
Absolute Maximum RF Pulse Width	1000 μs		
Absolute Maximum RF Pulse Duty Cycle	10%		

Exceeding any one or combination of these limits may cause permanent damage to this device.

Thermal Characteristics

Parameter	Test Conditions	Symbol	Typical	Units
DC Thermal Resistance using Finite Element Analysis 12	V _{DS} = 50 V, T _C = 85°C 100 μs, 10%, P _{DISS} = 418 W	$R_{\theta}(FEA)$	0.22	°C/W
Thermal Resistance using Infrared Measurement of Component Body Temperature 13	V_{DS} = 50 V, I_{DQ} = 500 mA T_{C} = 65°C, P_{IN} = 42 dBm 1.4 GHz, 100 µs , 10%, P_{DISS} = 320 W	$R_{\theta}(IR)$	0.20	°C/W
Thermal Resistance using Infrared Measurement of Component Body Temperature ¹³	V_{DS} = 50 V, I_{DQ} = 500 mA T_{C} = 65°C, P_{IN} = 42 dBm 1.4 GHz, 1000 µs , 10%, P_{DISS} = 320 W	$R_{\theta}(IR)$	0.20	°C/W

^{12.} This information for reference only, at the recommended operation condition, T_{CH} will be less than 150°C.

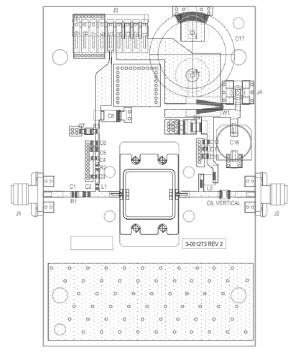
Handling Procedures

Please observe the following precautions to avoid damage.

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B and CDM Class C2a devices.

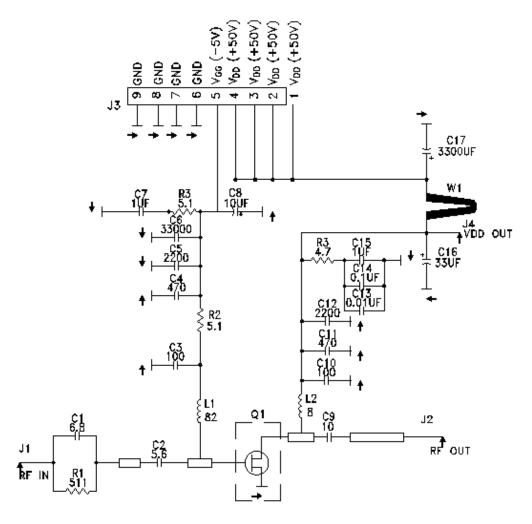
MACOM does not recommend sustained operation above maximum operating conditions.


 ^{10.} Operating at drain source voltage V_{DS} < 55 V will ensure MTTF > 2 x 10⁶ hours.
11. Operating at nominal conditions with T_{CH} ≤ 225°C will ensure MTTF > 2 x 10⁶ hours.

^{13.} In this product, the thermal limitation is on the maximum body temperature of the components used inside the package.

CGHV14650F Rev. V2

Evaluation Test Fixture¹ and Recommended Tuning Solution 1.2 – 1.4 GHz


Parts List

Reference Designator	Value	Tolerance	Manufacturer	Part Number
C1	6.8 pF	0.25 pF	Kyocera/AVX	ATC600S6R8CW250XT
C2	5.6 pF	0.1 pF	Kyocera/AVX	ATC600F5R6BW250XT
C3,C10	100 pF	5%	Kyocera/AVX	ATC600F100JW250XT
C4, C11	470 pF	5%	Murata	GRM39X7R471J100AD
C5,C12	2200 pF	10%	Murata	GRM155R72A222K01D
C6	33000 pF	10%	Murata	GRM21BR72A333KA01
C7,C15	1 μF	10%	Murata	GCJ21BC72A105KE02L
C8	10 μF	10%	Kemet	T496C106K016ATE2K0
C9	10 pF	0.1 pF	Kyocera/AVX	ACT800B100JW500XT
C13	0.01 µF	10%	Murata	GCJ21BC72A103KE02L
C14	0.1 µF	10%	Murata	GCJ21BC72A104KE02L
C16	33 µF	10%	Panasonic	EEE-2AA330P
C17	3300 µF	20%	Nichicon	UFW2A332MRD
R1	511 Ω	1%	Vishay/Dale	CRCW0603511RFKEC
R2, R3	5.1 Ω	1%	Vishay/Dale	CRCW06035R10FKEAC
R4	4.7 Ω	1%	Vishay/Dale	CRCW12064R70FKEAC
L1	82 nH	5%	Coilcraft	0603CS-82NXJEW
L2	8 nH	2%	Coilcraft	A03T
J1,J2	-	-	Gigalane	PSF-S00-000
J3	-	-	TE Connectivity	640457-9
J4	-	-	Cinch	131-3711-201
W1	-	-	-	18 AWG Black
Q1	MAC	OM GaN Power	Amplifier	CGHV14650F
PCB	RO4350B, 30 mil, 2 oz. Cu (1 oz. CLAD, 1 oz. PLATED), Tin/Lead Finish			

CGHV14650F Rev. V2

Evaluation Test Fixture and Recommended Tuning Solution 1.2 – 1.4 GHz

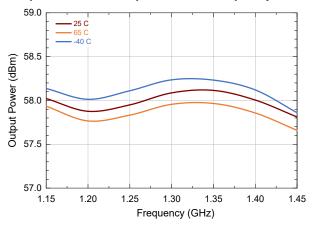
Description

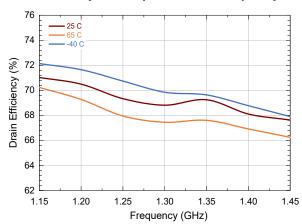
Parts measured on the evaluation board (30-mil thick RO4350B). Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the previous page.

Bias Sequencing Turning the device ON

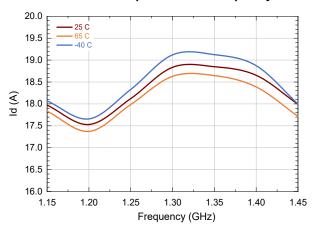
- 1. Set V_{GS} to pinch-off (V_P, typ. -5 V).
- 2. Turn on V_{DS} to nominal voltage (50 V).
- 3. Increase V_{GS} until I_{DS} current is reached.
- 4. Apply RF power to desired level.

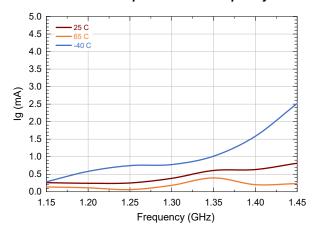
Turning the device OFF

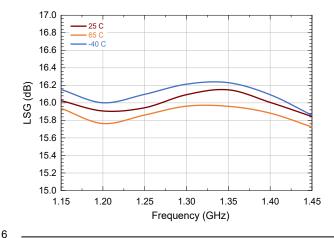

- 1. Turn the RF power OFF.
- 2. Decrease V_{GS} down to V_P pinch-off (typ. -5 V).
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS} .


CGHV14650F Rev. V2

Typical Performance Curves as Measured in the Evaluation Test Fixture: Pulsed 100 μ s 10%, V_{DS} = 50 V, I_{DQ} = 500 mA, P_{IN} = 42 dBm (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.

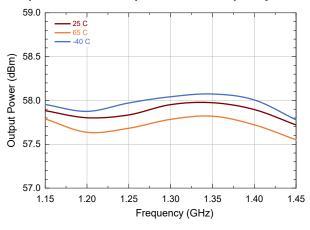

Output Power vs. Temperature and Frequency

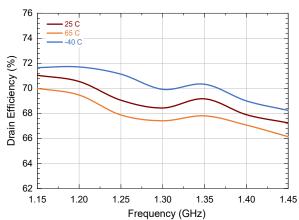

Drain Efficiency vs. Temperature and Frequency


Drain Current vs. Temperature and Frequency

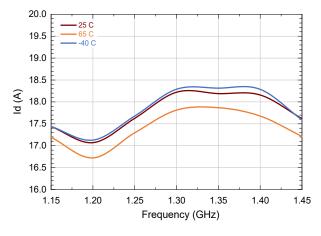
Gate Current vs. Temperature and Frequency

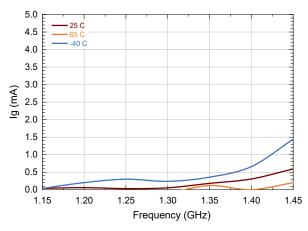
Large Signal Gain vs. Temperature and Frequency

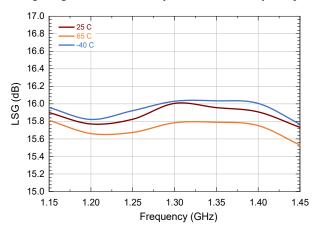



CGHV14650F Rev. V2

Typical Performance Curves as Measured in the Evaluation Test Fixture: Pulsed 1000 μ s 10%, V_{DS} = 50 V, I_{DQ} = 500 mA, P_{IN} = 42 dBm (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.

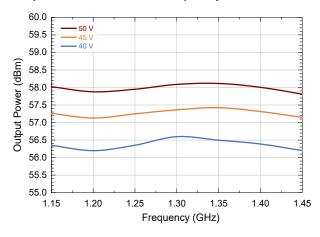

Output Power vs. Temperature and Frequency

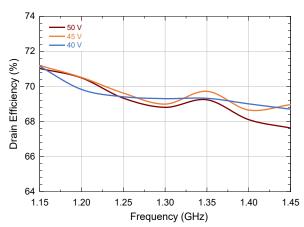

Drain Efficiency vs. Temperature and Frequency


Drain Current vs. Temperature and Frequency

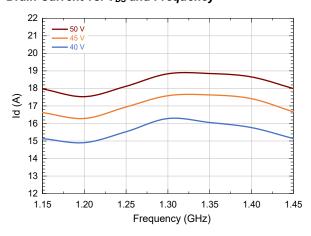
Gate Current vs. Temperature and Frequency

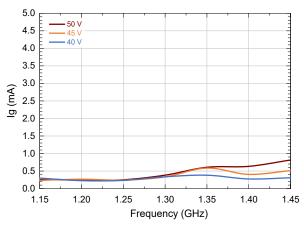
Large Signal Gain vs. Temperature and Frequency

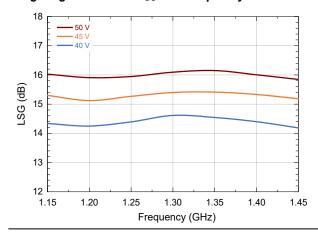



CGHV14650F Rev. V2

Typical Performance Curves as Measured in the Evaluation Test Fixture: Pulsed 100 μ s 10%, I_{DQ} = 500 mA, Pin = 42 dBm, T_C = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.

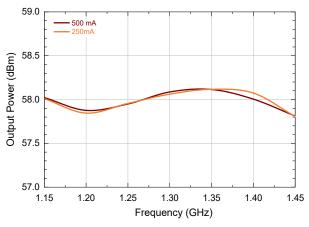

Output Power vs. V_{DS} and Frequency

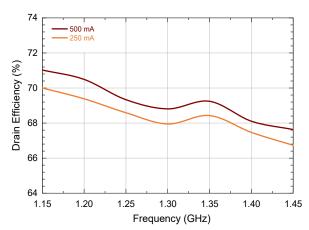

Drain Efficiency vs. V_{DS} and Frequency


Drain Current vs. V_{DS} and Frequency

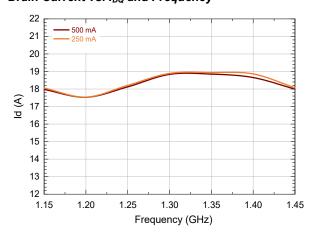
Gate Current vs. V_{DS} and Frequency

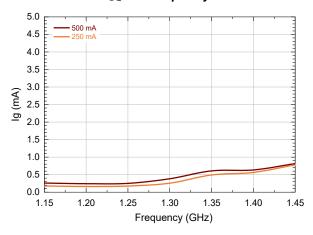
Large Signal Gain vs. VDS and Frequency

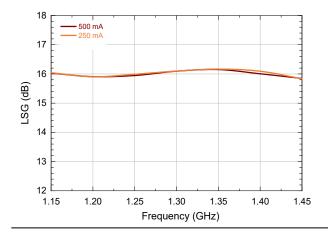



CGHV14650F Rev. V2

Typical Performance Curves as Measured in the Evaluation Test Fixture: Pulsed 100 us 10%, V_{DS} = 50 V, P_{IN} = 42 dBm, T_{C} = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.

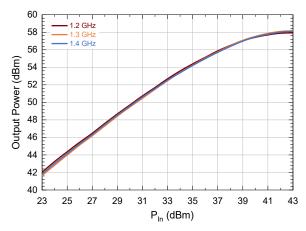

Output Power vs. IDQ and Frequency

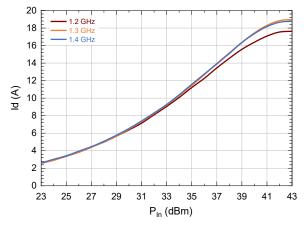

Drain Efficiency vs. IDQ and Frequency


Drain Current vs. IDQ and Frequency

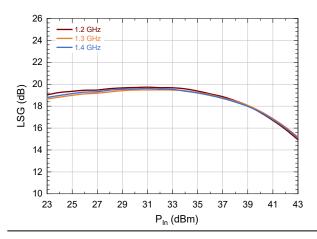
Gate Current vs. IDQ and Frequency

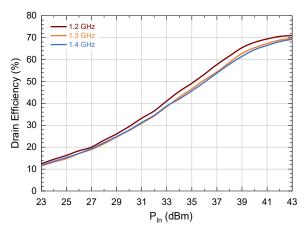
Large Signal Gain vs. IDQ and Frequency

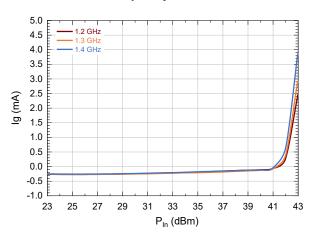



CGHV14650F Rev. V2

Typical Performance Curves as Measured in the Evaluation Test Fixture: Pulsed 100 us 10%, V_{DS} = 50 V, I_{DQ} = 500 mA, T_{C} = 25°C (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.

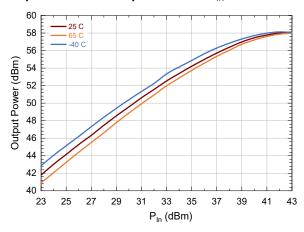

Output Power vs. Frequency and PIN


Drain Current vs. Frequency and PIN

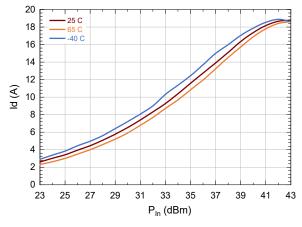

Large Signal Gain vs. Frequency and PIN

Drain Efficiency vs. Frequency and PIN

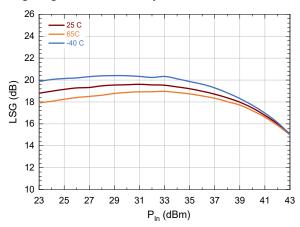
Gate Current vs. Frequency and PIN

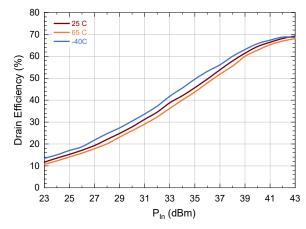


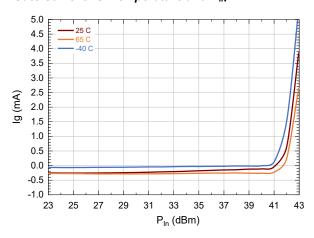
CGHV14650F


Rev. V2

Typical Performance Curves as Measured in the Evaluation Test Fixture: Pulsed 100 us 10%, V_{DS} = 50 V, I_{DQ} = 500 mA, Frequency = 1.4 GHz (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.

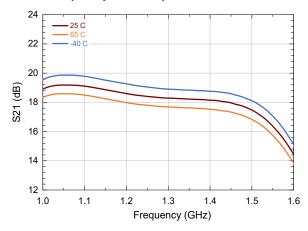

Output Power vs. Temperature and PIN

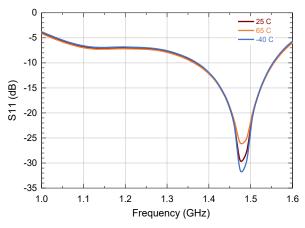

Drain Current vs. Temperature and PIN


Large Signal Gain vs. Temperature and PIN

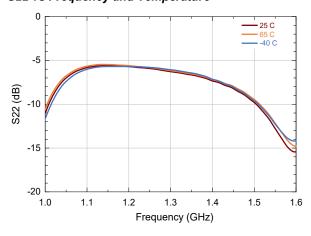
Drain Efficiency vs. Temperature and PIN

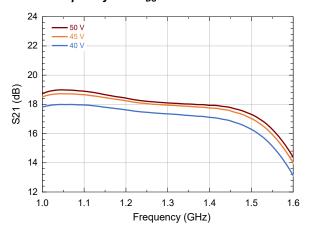
Gate Current vs. Temperature and PIN

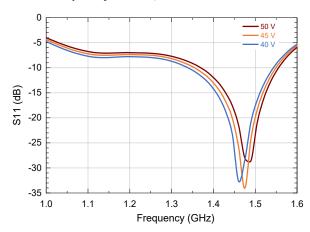


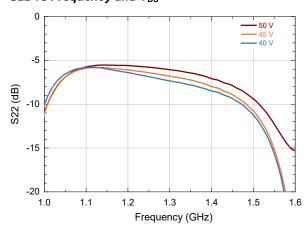

CGHV14650F Rev. V2

Typical Performance Curves as Measured in the Evaluation Test Fixture: CW, V_{DS} = 50 V, I_{DQ} = 500 mA, P_{IN} = -20 dBm (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.


S21 vs Frequency and Temperature

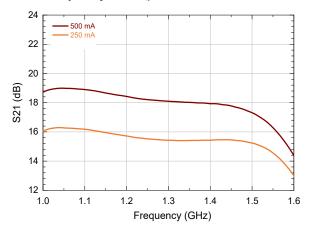

S11 vs Frequency and Temperature

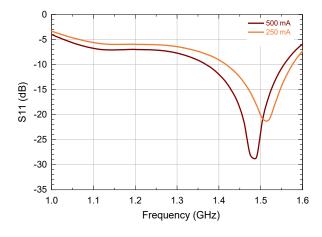

S22 vs Frequency and Temperature


S21 vs Frequency and V_{DS}

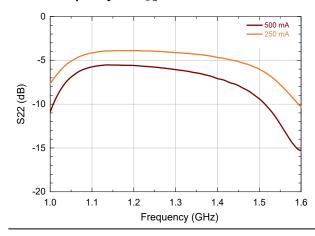
S11 vs Frequency and V_{DS}

S22 vs Frequency and V_{DS}

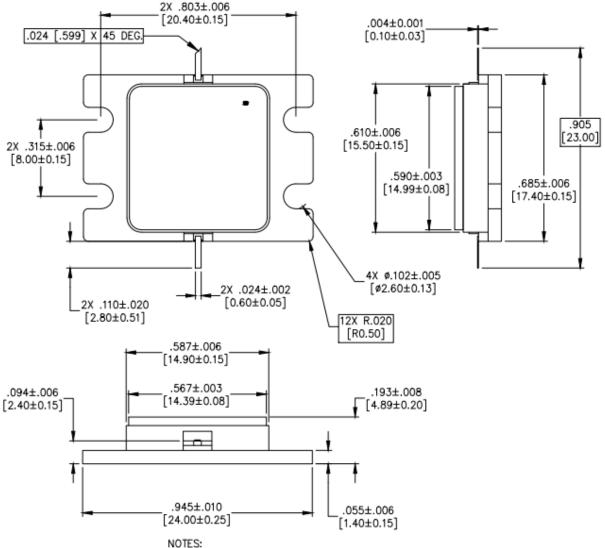



CGHV14650F Rev. V2

Typical Performance Curves as Measured in the Evaluation Test Fixture: CW, V_{DS} = 50 V, I_{DQ} = 500 mA, P_{IN} = -20 dBm (Unless Otherwise Noted) For Engineering Evaluation Only—This data does not Modify MACOM's Datasheet Limits.


S21 vs Frequency and IDQ

S11 vs Frequency and IDQ


S22 vs Frequency and IDQ

CGHV14650F Rev. V2

Lead-Free AC-587BH-2 Package Dimensions[†]

- 1. ALL DIMENSIONS SHOWN AS in[mm]. CONTROLLING DIMENSIONS ARE IN in AND CONVERTED mm DIMENSIONS ARE NOT NECESSARILY EXACT.
- 2. ALL TOLERANCES ARE ±.005 [0.13] UNLESS OTHERWISE NOTED
- 3. LEAD FINISH: AU FLANGE FINISH: AU
- 4. LID SEAL EPOXY MAY FLOW OUT A MAXIMUM OF .020 [0.51] FROM EDGE OF LID
- 5. LID MAY BE MIS-ALIGNED UP TO .010 [0.25] FROM PACKAGE IN ANY DIRECTION

 $^{^{\}dagger}$ Reference Application Note AN-0004363 for lead-free solder reflow recommendations. Plating is Au.

GaN Amplifier 50 V, 630 W, Pulsed 1.2 GHz - 1.4 GHz

MACOM PURE CARBIDE

CGHV14650F Rev. V2

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.