

CGH55030F1/P1

30 W, 5500-5800 MHz, 28V, GaN HEMT for WiMAX

Description

The CGH55030F1/P1 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH55030F1/P1 ideal for 5.5-5.8 GHz WiMAX and BWA amplifier applications. The transistor is available in both screw-down, flange and solder-down, pill packages. Based on appropriate external match adjustment, the CGH55030F1/P1 is suitable for 4.9 - 5.5 GHz applications as well.

Package Types: 440196 & 440166 PN: CGH55030P1 & CGH55030F1

Typical Performance Over 5.5-5.8 GHz ($T_c = 25^{\circ}C$) of Demonstration Amplifier

Parameter	5.50 GHz	5.65 GHz	5.80 GHz	Units
Small Signal Gain	9.5	10.0	9.5	dB
EVM at P _{AVE} = 29 dBm	1.1	0.9	0.9	%
EVM at P _{AVE} = 36 dBm	2.2	1.4	1.4	%
Drain Efficiency at P _{AVE} = 4 W	23	24	25	%
Input Return Loss	10.8	22	9.3	dB

Features

- 300 MHz Instantaneous Bandwidth
- 30 W Peak Power Capability
- 10 dB Small Signal Gain
- $4 \text{ W P}_{AVE} < 2.0\% \text{ EVM}$
- 25% Efficiency at 4 W Average Power

Applications

- Designed for WiMAX Fixed Access 802.16-2004 **OFDM Applications**
- Designed for Multi-carrier DOCSIS Applications

Large Signal Models Available for ADS and MWO

¹ Measured in the CGH55030-AMP amplifier circuit, under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, P_{AR} = 9.8 dB @ 0.01 % Probability on CCDF.

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V_{DSS}	120	V	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Power Dissipation	P _{DISS}	14	W	
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	7.0	mA	- 25°C
Maximum Drain Current ¹	I _{DMAX}	3	А	25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	R _{θJC}	4.8	°C/W	85°C
Case Operating Temperature ³	T _C	-40, +150	°C	30 seconds

Notes

Electrical Characteristics $(T_c = 25^{\circ}C)$

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹							
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	.,	$V_{DS} = 10 \text{ V}, I_D = 7.2 \text{ mA}$	
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	V _{DS} = 28 V, I _D = 250 mA	
Saturated Drain Current	I _{DS}	5.8	7.0	_	Α	V _{DS} = 6.0 V, V _{GS} = 2 V	
Drain-Source Breakdown Voltage	V_{BR}	84	_	_	V _{DC}	V _{GS} = -8 V, I _D = 7.2 mA	
RF Characteristics ² (T _C = 25°C, F	RF Characteristics ² (T _C = 25°C, F ₀ = 5.65 GHz unless otherwise noted)						
Small Signal Gain	G _{SS}	8.5	10.0	_	dB	V _{DD} = 28 V, I _{DQ} = 250 mA	
Drain Efficiency ⁴	η	19	24	_	0/	V = 20 V L = 250 WA B = 4 W	
Error Vector Magnitude	EVM	_	2.0	2.5	- %	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{AVE} = 4 \text{ W}$	
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, V _{DD} = 28 V, I _{DQ} = 250 mA, P _{AVE} = 4 W	
Dynamic Characteristics							
Input Capacitance	C _{GS}	_	9.0	_			
Output Capacitance	C _{DS}	_	2.6	_	pF	$V_{DS} = 28 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$	
Feedback Capacitance	C _{GD}	_	0.4	_]		

Notes:

 $^{^{\}rm 1}$ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

³ Measured for the CGH55030F1 at P_{DISS} = 14 W

 $^{^{\}mathrm{1}}$ Measured on wafer prior to packaging.

² Measured in the CGH55030-AMP test fixture.

³ Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, PAR = 9.8 dB @ 0.01 % Probability on CCDF

⁴ Drain Efficiency = P_{OUT}/P_{DC}

Typical WiMAX Performance

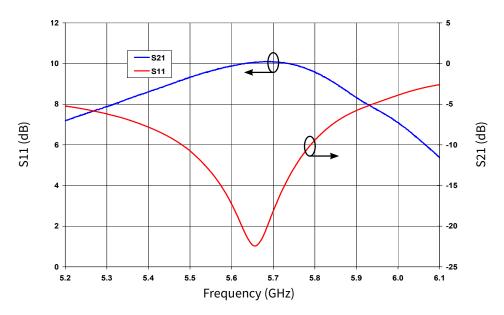


Figure 1. Small Signal S-Parameters vs Frequency of CGH55030F1 and CGH55030P1 in the CGH55030-AMP $V_{DD} = 28 \text{ V}, I_{DO} = 250 \text{ mA}$

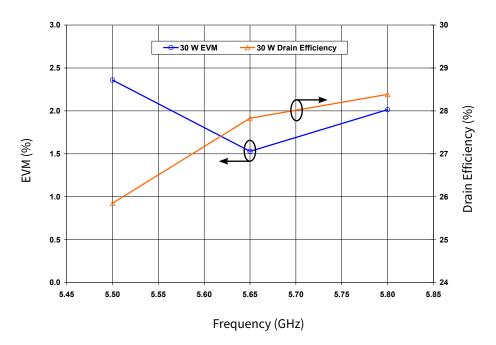


Figure 2. Typical EVM and Efficiency vs Frequency of CGH55030F1 and CGH55030P1 in the CGH55030-AMP V_{DD} = 28 V, I_{DQ} = 250 mA, 802.16-2004 OFDM, PAR = 9.8 dB, P_{AVE} = 5 W

Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, PAR = 9.8 dB @ 0.01 % Probability on CCDF

Typical WiMAX Performance

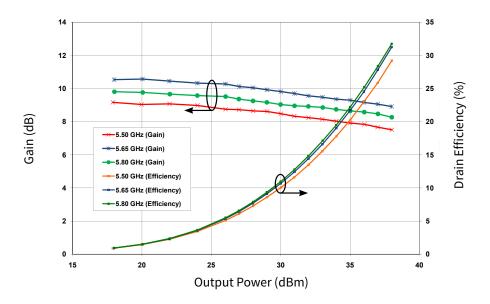
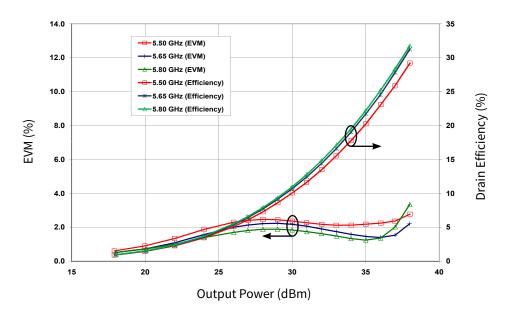
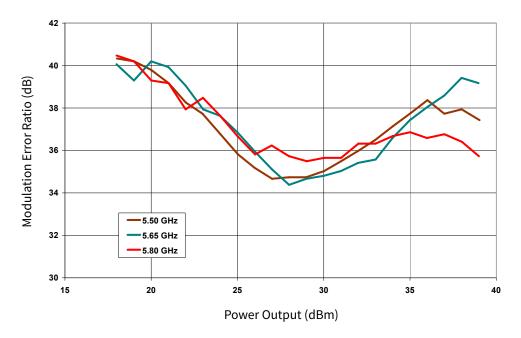


Figure 3. Drain Efficiency and Gain vs Output Power of CGH55030F1 and CGH55030P1 in CGH55030-AMP V_{DD} = 28 V, I_{DO} = 250 mA, 802.16-2004 OFDM, PAR = 9.8 dB

Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, Pag = 9.8 dB @ 0.01 % Probability on CCDF




Figure 4. Typical EVM and Drain Efficiency vs Output Power of CGH55030F1 and CGH55030P1 in CGH55030-AMP at 5.50GHz, 5.65 GHz, 5.80GHz, 802.16-2004 OFDM, PAR = 9.8 dB

Notes:

Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, PAR = 9.8 dB @ 0.01 % Probability on CCDF.

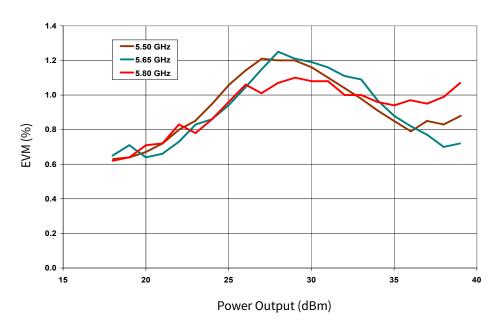

Typical DOCSIS Performance

Figure 5. Modulation Error Ratio vs Output Power of CGH55030F1 and CGH55030P1 in Broadband Amplifier Circuit

Note:

MER is the metric of choice for cable systems and can be related to EVM by the following equation: $EVM(\%) = 100 \times 10^{\circ} - ((MERdB + MTAdB)/20)$. MTA is the "maximum-to-average constellation power ratio" which varies with the modulation type: MTA = 0 for BPSK and QPSK; 2.55 for 16QAM and 8QAM-DS; 3.68 for 64QAM and 32QAM-DS; 4.23 for 256QAM and 128QAM-DS

Figure 6. EVM vs Output Power of CGH55030F1 and CGH55030P1 in Broadband Amplifier Circuit

Under DOCSIS, 6.0 MHz Channel BW, 64 QAM, PN23, Filter Alpha 0.18, PAR = 6.7dB

Typical Performance

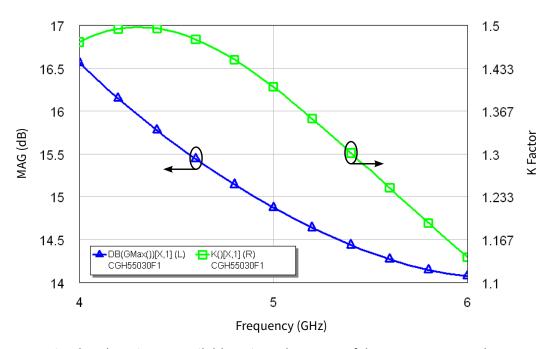


Figure 7. Simulated Maximum Available Gain and K Factor of the CGH55030F1 and CGH55030P1 $V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ A}$

Typical Noise Performance

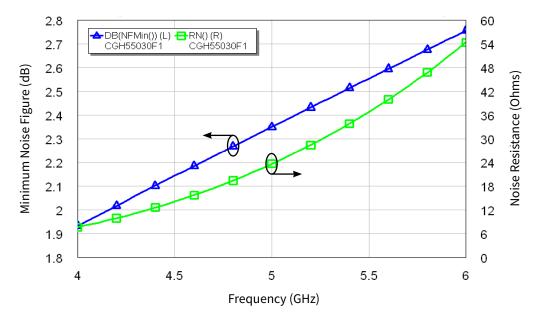
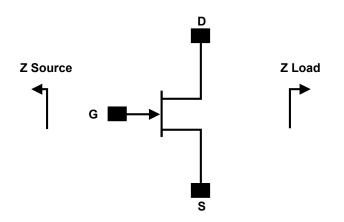



Figure 8. Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH55030F1 and CGH55030P1 $V_{DD} = 28 \text{ V}$, $I_{DQ} = 250 \text{ mA}$

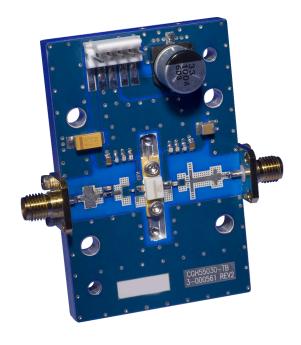
6

Source and Load Impedances

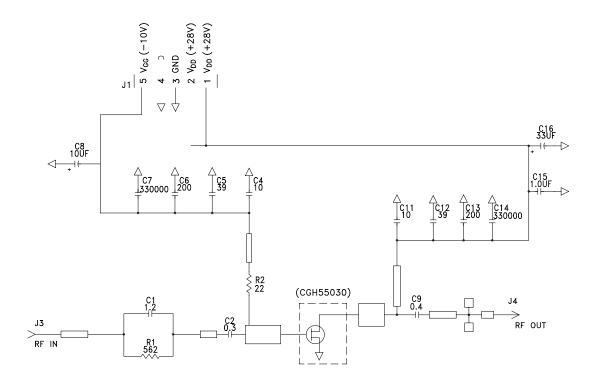
Frequency (MHz)	Z Source	Z Load
5500	8.0 – j12.4	14.1 – j12.6
5650	8.7 – j13.1	14.7 – j11.7
5800	8.4 – j14.0	15.4 – j11.0

Electrostatic Discharge (ESD) Classifications

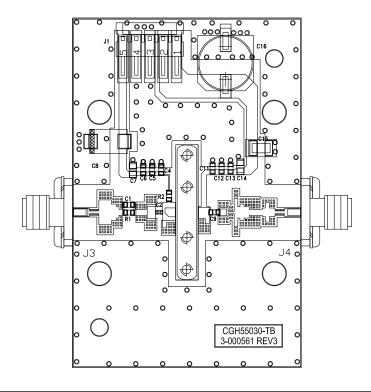
Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1A	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	C3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C


 $^{^1}$ V $_{\rm DD}$ = 28 V, I $_{\rm DQ}$ = 250 mA in the 440166 package 2 Impedances are extracted from CGH55030-AMP demonstration amplifier circuit and are not source and load pull data derived from the transistor

CGH55030-AMP Demonstration Amplifier Circuit Bill of Materials

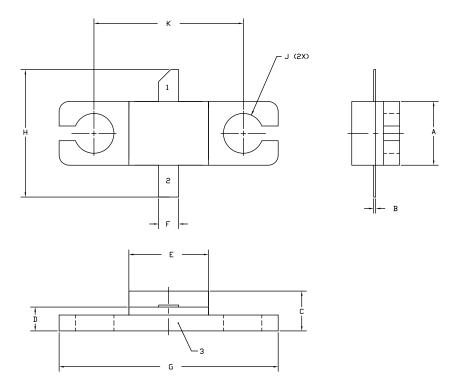

Designator	Description	Qty
R1	RES, 1/16W, 0603, 1%, 562 OHMS	1
R2	RES, 1/16W, 0603, 1%, 22.6 OHMS	1
C2	CAP, 0.3pF, +/-0.05pF, 0402, ATC600L	1
C16	CAP, 33μF, 20%, G CASE	1
C15	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
C8	CAP 10μF, 16V TANTALUM	1
C9	CAP, 0.4pF, +/-0.05pF, 0603, ATC600S	1
C1	CAP, 1.2pF, +/-0.1pF, 0603, ATC600S	1
C6, C13	CAP, 200pF, 0603 PKG, 100 V	2
C4, C11	CAP, 10.0pF, +/-5%, 0603, ATC600S	2
C5, C12	CAP, 39pF, +/-5%, 0603, ATC600S	2
C7, C14	CAP, 330000pF, 0805, 100V, TEMP STABILIZ	2
J3, J4	CONN, SMA, PANEL MOUNT JACK, FLANGE	2
J1	HEADER RT>PLZ .1CEN LK 5POS	1
_	PCB, RO4350B, Er = 3.48, h = 20 mil	1
_	CGH55030	1

CGH55030-AMP Demonstration Amplifier Circuit



CGH55030-AMP Demonstration Amplifier Circuit Schematic

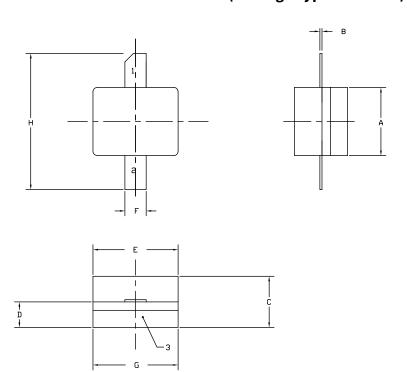
CGH55030-AMP Demonstration Amplifier Circuit Outline


Typical Package S-Parameters for CGH55030F1 and CGH55030P1 (Small Signal, V_{DS} = 28 V, I_{DQ} = 250 mA, angle in degrees)

Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.917	-157.22	12.62	91.45	0.018	7.56	0.458	-158.97
600 MHz	0.916	-161.92	10.57	87.33	0.018	4.70	0.465	-160.93
700 MHz	0.916	-165.46	9.07	83.78	0.018	2.41	0.472	-162.19
800 MHz	0.916	-168.28	7.94	80.58	0.018	0.51	0.478	-163.04
900 MHz	0.916	-170.61	7.05	77.64	0.017	-1.12	0.485	-163.64
1.0 GHz	0.916	-172.60	6.33	74.88	0.017	-2.55	0.493	-164.09
1.2 GHz	0.917	-175.88	5.24	69.73	0.017	-4.94	0.508	-164.77
1.4 GHz	0.918	-178.57	4.46	64.94	0.017	-6.84	0.525	-165.36
1.6 GHz	0.919	179.09	3.87	60.41	0.016	-8.31	0.542	-165.99
1.8 GHz	0.921	176.98	3.40	56.07	0.016	-9.39	0.559	-166.73
2.0 GHz	0.922	175.03	3.03	51.90	0.015	-10.06	0.577	-167.59
2.2 GHz	0.924	173.17	2.73	47.87	0.014	-10.31	0.594	-168.57
2.4 GHz	0.925	171.39	2.47	43.97	0.014	-10.12	0.610	-169.67
2.6 GHz	0.926	169.65	2.26	40.19	0.013	-9.46	0.626	-170.88
2.8 GHz	0.928	167.93	2.08	36.52	0.013	-8.31	0.642	-172.17
3.0 GHz	0.929	166.24	1.92	32.94	0.013	-6.65	0.656	-173.55
3.2 GHz	0.930	164.54	1.78	29.45	0.012	-4.49	0.670	-175.00
3.4 GHz	0.931	162.85	1.66	26.05	0.012	-1.85	0.683	-176.50
3.6 GHz	0.932	161.14	1.55	22.72	0.012	1.19	0.695	-178.06
3.8 GHz	0.933	159.42	1.46	19.46	0.012	4.55	0.706	-179.66
4.0 GHz	0.933	157.68	1.38	16.27	0.012	8.08	0.716	178.70
4.1 GHz	0.934	156.80	1.34	14.69	0.012	9.87	0.721	177.86
4.2 GHz	0.934	155.91	1.31	13.12	0.012	11.64	0.726	177.02
4.3 GHz	0.934	155.01	1.27	11.57	0.012	13.38	0.730	176.17
4.4 GHz	0.934	154.11	1.24	10.03	0.013	15.08	0.735	175.30
4.5 GHz	0.935	153.20	1.21	8.49	0.013	16.71	0.739	174.44
4.6 GHz	0.935	152.28	1.18	6.97	0.013	18.26	0.743	173.56
4.7 GHz	0.935	151.35	1.16	5.46	0.013	19.72	0.746	172.67
4.8 GHz	0.935	150.41	1.13	3.95	0.014	21.09	0.750	171.78
4.9 GHz	0.935	149.46	1.11	2.46	0.014	22.35	0.753	170.88
5.0 GHz	0.935	148.49	1.08	0.96	0.015	23.50	0.756	169.97
5.1 GHz	0.935	147.52	1.06	-0.52	0.015	24.55	0.760	169.05
5.2 GHz	0.935	146.53	1.04	-2.00	0.016	25.48	0.762	168.12
5.3 GHz	0.935	145.53	1.02	-3.48	0.016	26.30	0.765	167.18
5.4 GHz	0.935	144.52	1.00	-4.96	0.017	27.02	0.768	166.24
5.5 GHz	0.935	143.49	0.99	-6.43	0.018	27.62	0.770	165.28
5.6 GHz	0.935	142.45	0.97	-7.90	0.018	28.12	0.773	164.32
5.7 GHz	0.934	141.39	0.95	-9.37	0.019	28.53	0.775	163.35
5.8 GHz	0.934	140.31	0.94	-10.84	0.020	28.83	0.777	162.36
5.9 GHz	0.934	139.22	0.93	-12.32	0.020	29.05	0.779	161.37
6.0 GHz	0.934	138.12	0.91	-13.79	0.021	29.18	0.781	160.36

To download the s-parameters in s2p format, go to the CGH55030F1/P1 Product page.

Product Dimensions CGH55030F1 (Package Type — 440166)


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.155	0.165	3.94	4.19
В	0.004	0.006	0.10	0.15
С	0.115	0.135	2.92	3.43
D	0.057	0.067	1.45	1.70
E	0.195	0.205	4.95	5.21
F	0.045	0.055	1.14	1.40
G	0.545	0.555	13.84	14.09
Н	0.280	0.360	7.11	9.14
J	ø .100		2.5	54
К	0.375		9.53	

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGH55030P1 (Package Type — 440196)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.155	0.165	3.94	4.19
В	0.003	0.006	0.10	0.15
С	0.115	0.135	2.92	3.17
D	0.057	0.067	1.45	1.70
E	0.195	0.205	4.95	5.21
F	0.045	0.055	1.14	1.40
G	0.195	0.205	4.95	5.21
Н	0.280	0.360	7.11	9.14

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH55030F1	GaN HEMT	Each	CGTESTURION
CGH55030P1	GaN HEMT	Each	CGH55030P1
CGH55030F1-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.