

CGH40006S 6 W, RF Power Gan HEMT, Plastic

Description

The CGH40006S is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGH40006S, operating from a 28 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CGH40006S ideal for linear and compressed amplifier circuits. The transistor is available in a 3mm x 3mm, surface mount, quad-flat-no-lead (QFN) package.

Package Type: 440203 PN: CGH40006S

Features

- Up to 6 GHz Operation
- 13 dB Small Signal Gain at 2.0 GHz
- 11 dB Small Signal Gain at 6.0 GHz
- 8 W typical at $P_{IN} = 32 \text{ dBm}$
- 65% Efficiency at $P_{IN} = 32 \text{ dBm}$
- 28 V Operation
- 3mm x 3mm Package

Applications

- 2-Way Private Radio
- Broadband Amplifiers
- Cellular Infrastructure
- Test Instrumentation
- Class A, AB, Linear amplifiers suitable for OFDM, W-CDMA, EDGE, CDMA waveforms

 \sim

1

Large Signal Models Available for ADS and MWO

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	M	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	175	Ľ	
Maximum Forward Gate Current	I _{GMAX}	2.1	mA	- 25°C
Maximum Drain Current ¹	I _{DMAX}	0.75	А	25°C
Soldering Temperature ²	Ts	260	°C	
Thermal Resistance, Junction to Case ^{3,4}	R _{θJC}	10.1	°C/W	
Case Operating Temperature ^{3,4}	Tc	-40, +150	°C	85°C

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

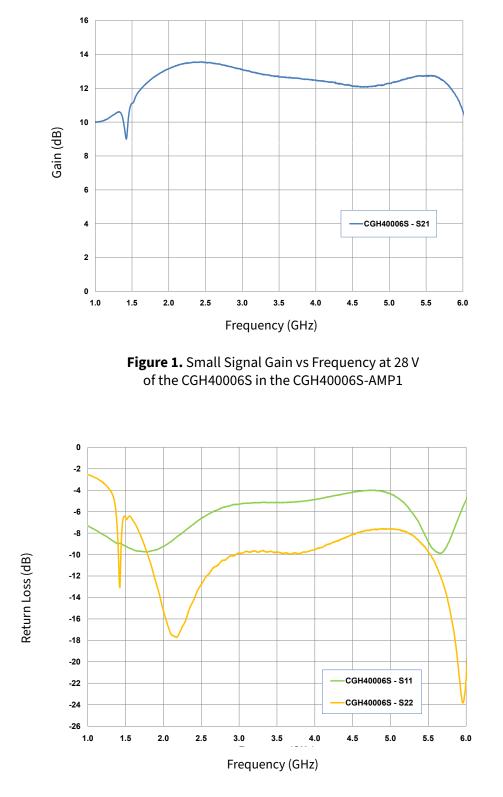
 $^{\rm 3}$ Measured for the CGH40006S at P_{_{\rm DISS}} = 8 W.

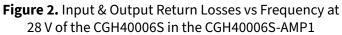
⁴ T_c = The temperature for the device. It refers to the temperature at the ground tab underneath the package. The PCB will add additional thermal resistance. The RTH for the demonstration amplifier, CGH40006S-AMP1, with 13 (Ø20 mil) via holes designed on a 20 mil thick Rogers 5880 PCB, is 5.1°C. The total Rth from the heat sink to the junction is 10.1°C +5.1°C = 15.2°C/W.

Electrical Characteristics ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions		
DC Characteristics ¹								
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3		$V_{DS} = 10 \text{ V}, I_{D} = 132.8 \text{ mA}$		
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	_	VDC	V _{DS} = 50 V, I _D = 800 mA		
Saturated Drain Current	I _{DS}	1.5	2.1	_	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$		
Drain-Source Breakdown Voltage	V _{BR}	84	_	_	V _{DC}	V _{GS} = -8 V, I _D = 132.8 mA		
RF Characteristics ² ($T_c = 25^{\circ}C$, $F_0 = 5.8$ GHz unless otherwise noted)								
Small Signal Gain	G _{ss}	10	11.8	_	dB			
Power Output at P _{IN} = 30 dBm	Pout	5	6.9	_	w	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$		
Drain Efficiency ³	η	40	53	_	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 200 \text{ mA}, P_{IN} = 30 \text{ dBm}$		
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 200 \text{ mA}$, $P_{IN} = 32 \text{ dBm}$		
Dynamic Characteristics								
Input Capacitance	C _{GS}	_	2.7	-				
Output Capacitance	C _{DS}	_	0.8	_	pF	$V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$		
Feedback Capacitance	C _{GD}	_	0.1	_				

Notes:


¹ Measured on wafer prior to packaging.


² Measured in the narrow band production test fixture AD-000291. This fixture is designed for high volume test at 5.8 GHz and may not show the full capability of the device due to source inductance and thermal performance. The demonstration amplifier, CGH40006S-AMP1, is a better indicator of the true RF performance of the device.

³ Drain Efficiency = P_{OUT} / P_{DC}

2

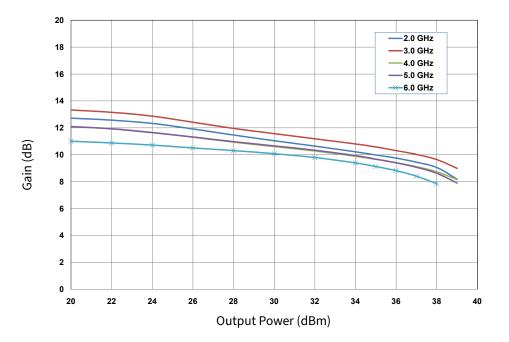
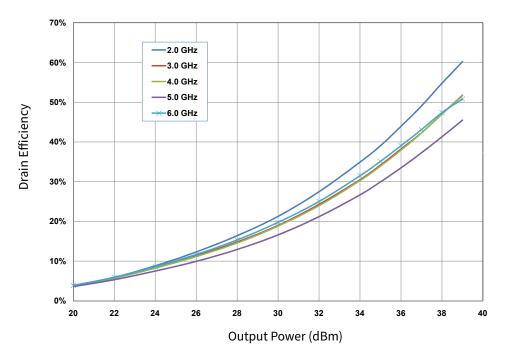
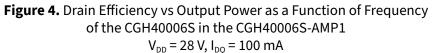
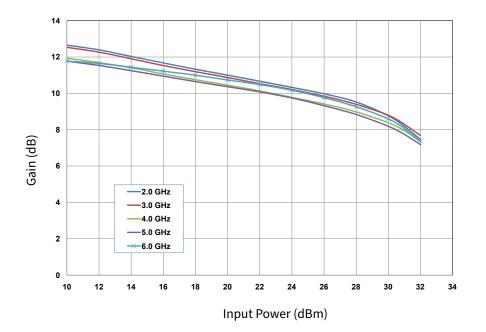
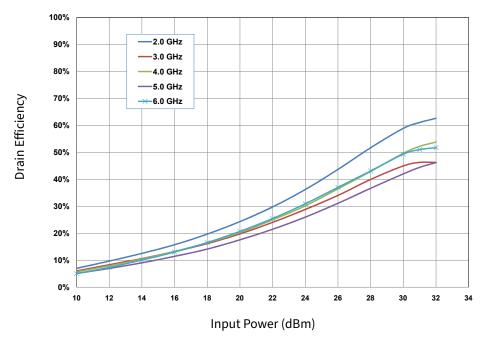
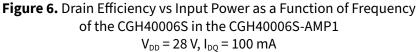
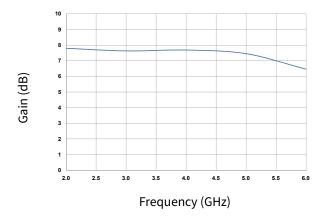
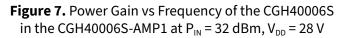
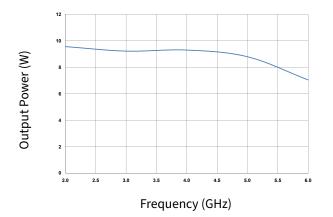




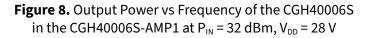
Figure 3. Power Gain vs Output Power as a Function of Frequency of the CGH40006S in the CGH40006S-AMP1 $V_{DD} = 28 V$, $I_{DO} = 100 mA$

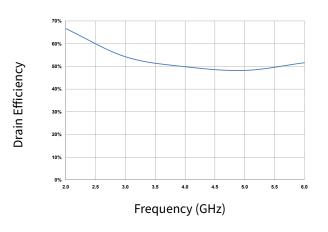
⁴ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

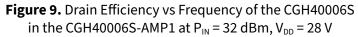






Figure 5. Power Gain vs Input Power as a Function of Frequency of the CGH40006S in the CGH40006S-AMP1 V_{DD} = 28 V, I_{DQ} = 100 mA









MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

6

Typical Noise Performance

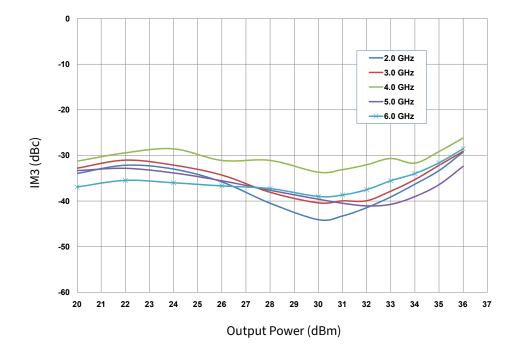
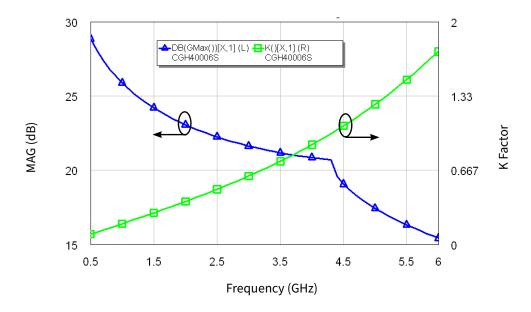


Figure 10. Third Order Intermodulation Distortion vs Average Output Poweras a Function of Frequency of the CGH40006S in the CGH40006S-AMP1 $V_{DD} = 28 \text{ V}, I_{DQ} = 60 \text{ mA}$

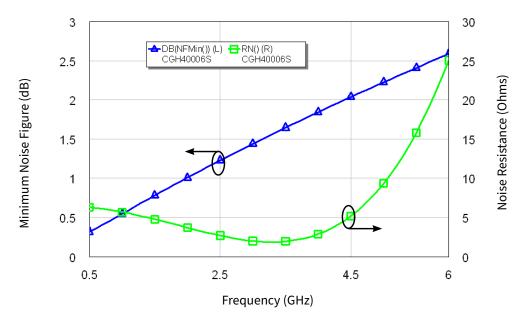
Electrostatic Discharge (ESD) Classifications

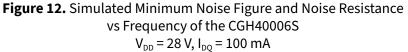

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification

Parameter	Symbol	Level	Test Methodology	
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20	

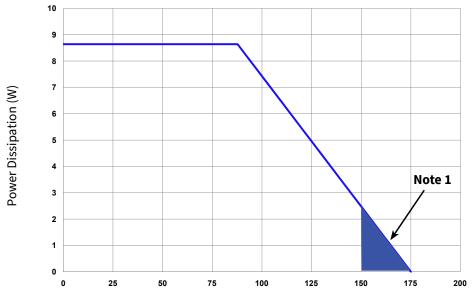
⁷ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 3.4, 2022-10-28





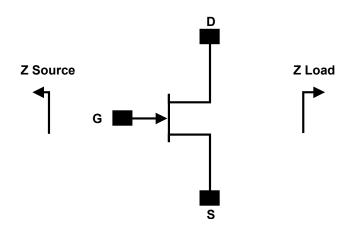
Note: On a 20 mil thick PCB

Typical Noise Performance



⁸ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

CGH40006S CW Power Dissipation De-rating Curve



Maximum Case Temperature (°C)

Note:

¹Area exceeds Maximum Case Operating Temperature (See Page 2).

Source and Load Impedances

Frequency	Z Source	Z Lead
1000	12.7 + j20.2	62.3 + j42
2000	5.98 + j6.81	32.7 + j32.9
3000	3.32 - j2.89	19.2 + j29.8
4000	2.38 - j9.45	15.2 + j15.7
5000	2.62 - j15.6	9.98 + j9.6
6000	1.94 - j21.35	8.51 + j2.07

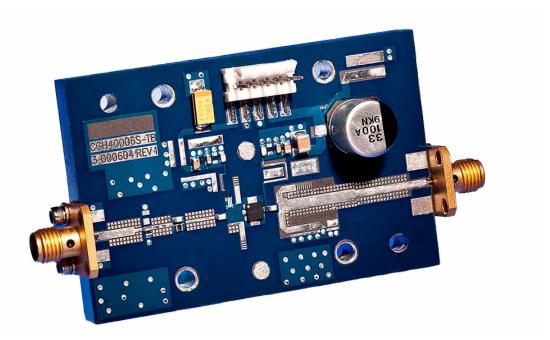
Notes:

 $^1\,V_{\text{DD}}$ = 28 V, I_{DQ} = 100 mA in the 440203 package.

 $^{\rm 2}$ Optimized for power gain, ${\sf P}_{\sf SAT}$ and ${\sf PAE}$

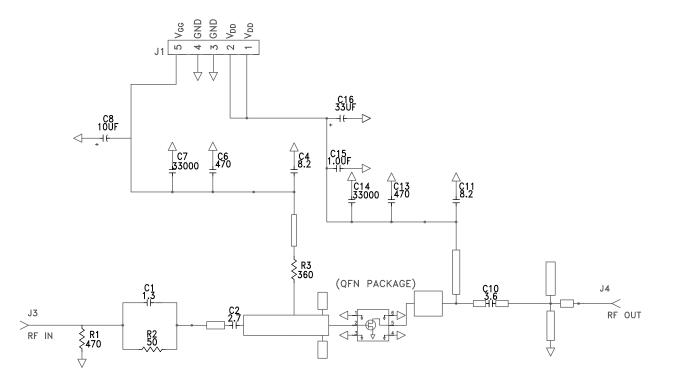
³ When using this device at low frequency, series resistors should be used to maintain amplifier stability.

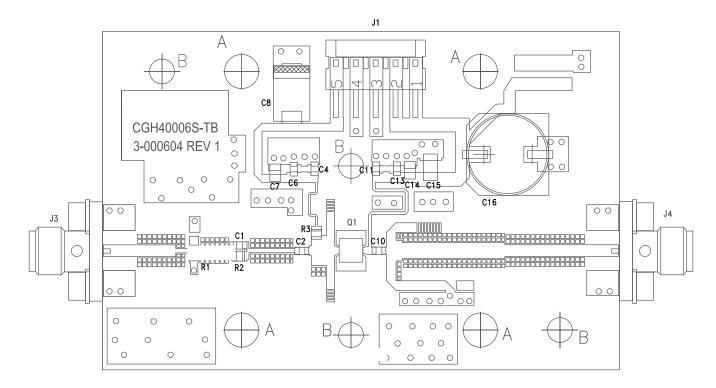
⁴ 35 pH source inductance is assumed between the package and RF ground (20 mil thick PCB).


⁹

CGH40006S-AMP1 Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
R1	RES, AIN, 0505, 470 Ohms (≤5% tolerance)	1
R2	RES, AIN, 0505, 50 Ohms (≤5% tolerance)	1
R3	RES, AIN, 0505, 360 Ohms (≤5% tolerance)	1
C1	CAP, 1.3pF +/-0.1pF, 0603, ATC 600S	1
C2	CAP, 2.7pF +/-0.25pF, 0603, ATC 600S	1
C10	CAP, 3.6pF +/-0.1pF, 0603, ATC 600S	1
C4,C11	CAP, 8.2pF +/-0.25, 0603, ATC 600S	2
C6,C13	CAP, 470pF +/-5%, 0603, 100 V	2
C7,C14	CAP, 33000pF, CER, 100V, X7R, 0805	2
C8	CAP, 10µf, 16V, SMT, TANTALUM	1
C15	CAP, 1.0µF +/-10%, CER, 100V, X7R, 1210	1
C16	CAP, 33µF, 100V, ELECT, FK, SMD	1
J3,J4	CONN, SMA, STR, PANEL, JACK, RECP	2
J1	HEADER RT>PLZ .1CEN LK 5POS	1
-	PCB, R05880, 0.020" THK	1
Q1	CGH40006S	1


CGH40006S-AMP1 Demonstration Amplifier Circuit


10 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u>

CGH40006S-AMP1 Demonstration Amplifier Circuit Schematic

CGH40006S-AMP1 Demonstration Amplifier Circuit Outline

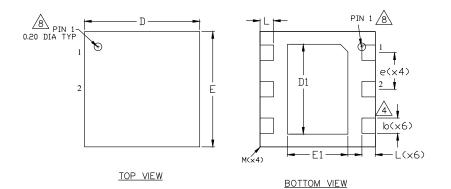
 11
 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

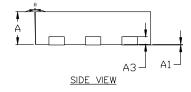
 For further information and support please visit:
 Rev. 3.4, 2022-10-28

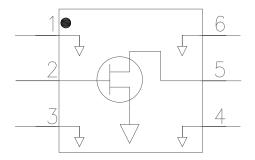
 https://www.macom.com/support
 Rev. 3.4, 2022-10-28

Typical Package S-Parameters for CGH40006S, (Small Signal, V_{DS} = 28 V, I_{DQ} = 100 mA, angle in degrees)

Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.933	-92.95	18.74	125.47	0.024	38.02	0.459	-48.87
600 MHz	0.922	-104.26	16.89	118.64	0.026	31.70	0.428	-54.78
700 MHz	0.912	-113.77	15.28	112.75	0.028	26.33	0.402	-59.82
800 MHz	0.905	-121.83	13.90	107.61	0.029	21.71	0.381	-64.21
900 MHz	0.899	-128.73	12.70	103.06	0.030	17.68	0.365	-68.10
1.0 GHz	0.894	-134.72	11.67	98.96	0.030	14.11	0.352	-71.62
1.1 GHz	0.891	-139.97	10.77	95.23	0.030	10.91	0.342	-74.86
1.2 GHz	0.888	-144.62	9.99	91.80	0.031	8.00	0.334	-77.87
1.3 GHz	0.886	-148.78	9.31	88.61	0.031	5.34	0.328	-80.72
1.4 GHz	0.884	-152.55	8.71	85.61	0.031	2.88	0.325	-83.43
1.5 GHz	0.883	-155.97	8.17	82.77	0.031	0.58	0.322	-86.03
1.6 GHz	0.881	-159.12	7.69	80.07	0.031	-1.57	0.321	-88.54
1.7 GHz	0.881	-162.04	7.26	77.49	0.031	-3.60	0.321	-90.98
1.8 GHz	0.880	-164.75	6.88	75.00	0.031	-5.53	0.321	-93.35
1.9 GHz	0.879	-167.29	6.53	72.60	0.031	-7.38	0.323	-95.67
2.0 GHz	0.879	-169.68	6.21	70.26	0.031	-9.14	0.325	-97.94
2.1 GHz	0.879	-171.94	5.92	68.00	0.030	-10.83	0.327	-100.17
2.2 GHz	0.879	-174.09	5.65	65.79	0.030	-12.46	0.330	-102.36
2.3 GHz	0.879	-176.14	5.40	63.62	0.030	-14.03	0.334	-104.51
2.4 GHz	0.879	-178.10	5.18	61.51	0.030	-15.55	0.338	-106.63
2.5 GHz	0.879	-179.98	4.97	59.43	0.030	-17.02	0.342	-108.71
2.6 GHz	0.879	178.20	4.77	57.38	0.029	-18.44	0.346	-110.77
2.7 GHz	0.879	176.44	4.59	55.37	0.029	-19.83	0.351	-112.81
2.8 GHz	0.879	174.74	4.42	53.39	0.029	-21.18	0.355	-114.82
2.9 GHz	0.879	173.09	4.26	51.43	0.029	-22.48	0.360	-116.80
3.0 GHz	0.880	171.49	4.11	49.50	0.028	-23.76	0.366	-118.76
3.2 GHz	0.880	168.39	3.84	45.70	0.028	-26.20	0.376	-122.63
3.4 GHz	0.881	165.43	3.60	41.97	0.027	-28.51	0.387	-126.41
3.6 GHz	0.882	162.57	3.38	38.31	0.026	-30.70	0.399	-130.13
3.8 GHz	0.883	159.81	3.19	34.71	0.025	-32.75	0.410	-133.78
4.0 GHz	0.884	157.13	3.01	31.16	0.025	-34.68	0.422	-137.38
4.2 GHz	0.885	154.52	2.85	27.65	0.024	-36.47	0.433	-140.91
4.4 GHz	0.887	151.96	2.71	24.19	0.023	-38.12	0.445	-144.40
4.6 GHz	0.888	149.45	2.57	20.77	0.022	-39.63	0.457	-147.84
4.8 GHz	0.889	146.98	2.45	17.38	0.022	-40.97	0.468	-151.24
5.0 GHz	0.890	144.55	2.33	14.03	0.021	-42.15	0.480	-154.60
5.2 GHz	0.892	142.15	2.23	10.71	0.020	-43.15	0.491	-157.92
5.4 GHz	0.893	139.78	2.13	7.41	0.019	-43.95	0.503	-161.20
5.6 GHz	0.894	137.43	2.04	4.15	0.018	-44.53	0.514	-164.45
5.8 GHz	0.896	135.11	1.95	0.91	0.018	-44.89	0.525	-167.66
6.0 GHz	0.897	132.80	1.87	-2.30	0.017	-45.00	0.535	-170.85


To download the s-parameters in s2p format, go to the CGH40006S Product Page. Note: On a 20 mil thick PCB.


¹² MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit:


Product Dimensions CGH40006S (Package Type – 440203)

DBA	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.90	1.00	0.032	0.035	0.039	
A1	0	0.02	0.05	0	0.0008	0.002	
A3		0.20REF.			0.008REF.		
b	0.30	0.40	0.45	0.012	0.016	0.018	
D		3.00BSC			0.118BSC		
D1		2.34BSC			0.092BSC		
E		3.00BSC			0.118BSC		
E1		1.57BSC			0.062BSC		
e		0.95BSC			0.037BSC		
L	0.20	0.30	0.45	0.008	0.012	0.018	
θ	0		12	0		12	
M			0.05			0.002	
N	6						
NE	3						

Pin	Input/Output
1	GND
2	RF IN
3	GND
4	GND
5	RF OUT
6	GND

 13
 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

 For further information and support please visit:
 Rev. 3.4, 2022-10-28

 <u>https://www.macom.com/support</u>
 Rev. 3.4, 2022-10-28

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH40006S	GaN HEMT	Each	400065 E930
CGH40006S-AMP1	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY. EXPRESS OR IMPLIED. RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹⁵ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 3.4, 2022-10-28 For further information and support please visit: