

CGH40006P

6 W, RF Power GaN HEMT

Description

The CGH40006P is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGH40006P, operating from a 28 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CGH40006P ideal for linear and compressed amplifier circuits. The transistor is available in a solder-down, pill package.

Package Type: 440109 PN: CGH40006P

Features

- Up to 6 GHz Operation
- 13 dB Small Signal Gain at 2.0 GHz
- 11 dB Small Signal Gain at 6.0 GHz
- 8 W typical at P_{IN} = 32 dBm
- 28 V Operation

Applications

- 2-Way Private Radio
- **Broadband Amplifiers**
- Cellular Infrastructure
- **Test Instrumentation**
- Class A, AB, amplifiers suitable for OFDM, W-CDMA, EDGE, CDMA waveforms

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	W	25°C
Gate-to-Source Voltage	V_{GS}	-10, +2	V	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225	C	
Maximum Forward Gate Current	I _{GMAX}	2.1	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	0.75	Α	25°C
Soldering Temperature ²	Ts	245	°C	
Thermal Resistance, Junction to Case ³	$R_{\theta JC}$	9.5	°C/W	85°C
Case Operating Temperature ³	Tc	-40, +150	°C	

Notes:

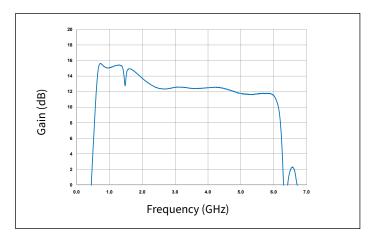
Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions		
DC Characteristics ¹								
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	V	$V_{DS} = 10 \text{ V, } I_{D} = 2.1 \text{ mA}$		
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	$V_{DS} = 28 \text{ V}, I_{D} = 100 \text{ mA}$		
Saturated Drain Current	I _{DS}	1.5	2.1	_	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$		
Drain-Source Breakdown Voltage	V_{BR}	84	_	_	V_{DC}	$V_{GS} = -8 \text{ V}, I_D = 2.1 \text{ mA}$		
RF Characteristics ² (T _c = 25°C, F ₀ = 2.0 GHz unless otherwise noted)								
Small Signal Gain	Gss	11.5	13	_	dB	V 20VI 100 A		
Power Output at P _{IN} = 32 dBm	Роит	7.0	9	_	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$		
Drain Efficiency ³	η	53	65	_	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}, P_{IN} = 32 \text{ dBm}$		
Output Mismatch Stress	VSWR	-	-	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 100 \text{ mA}$, $P_{IN} = 32 \text{ dBm}$		
Dynamic Characteristics								
Input Capacitance	C _{GS}	_	3.0	_				
Output Capacitance	C _{DS}	_	1.1	_	pF	$V_{DS} = 28 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$		
Feedback Capacitance	$C_{\sf GD}$	_	0.1	_				

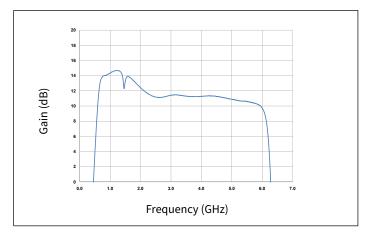
Notes

¹ Current limit for long term, reliable operation

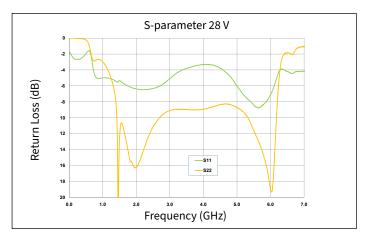
² Refer to the Application Note on soldering


 $^{^3}$ Measured for the CGH40006P at $P_{DISS} = 8$ W.

¹ Measured on wafer prior to packaging.


² Measured in the CGH40006P-AMP

 $^{^3}$ Drain Efficiency = P_{OUT} / P_{DC}



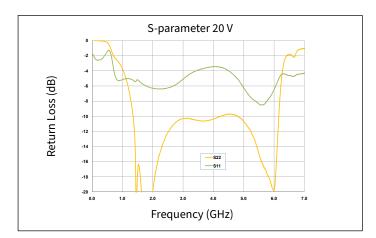

Figure 1. Small Signal Gain vs Frequency at 28 V of the CGH40006P in the CGH40006P-AMP

Figure 3. Small Signal Gain vs Frequency at 20 V of the CGH40006P in the CGH40006P-AMP

Figure 2. Input & Output Return Losses vs Frequency at 28 V of the CGH40006P in the CGH40006P-AMP

Figure 4. Input & Output Return Losses vs Frequency at 20 V of the CGH40006P in the CGH40006P-AMP

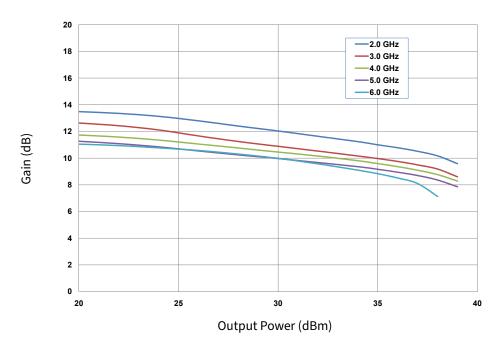


Figure 5. Power Gain vs Output Power as a Function of Frequency of the CGH40006P in the CGH40006P-AMP $V_{DD} = 28 \text{ V}, I_{DO} = 100 \text{ mA}$

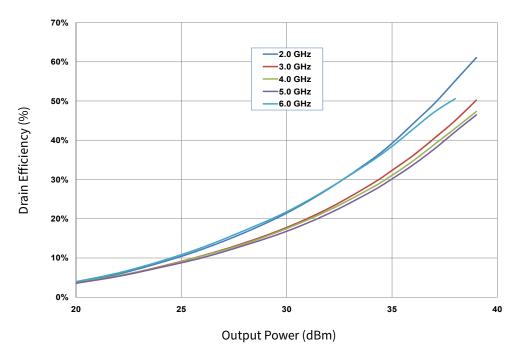


Figure 6. Drain Efficiency vs Output Power as a Function of Frequency of the CGH40006P in the CGH40006P-AMP $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$

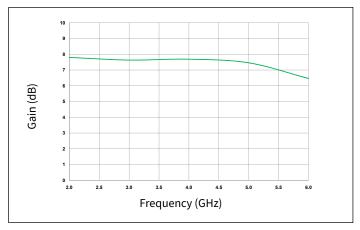
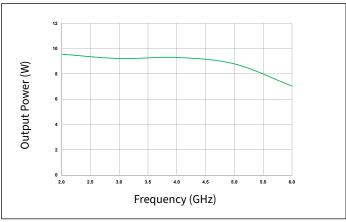



Figure 7. Small Signal Gain vs Frequency at 28 V in the CGH40006P-AMP $P_{IN} = 32 \text{ dBm}, V_{DD} = 28 \text{ V}$

Figure 9. Output Power vs Frequency of the CGH40006P in the CGH40006P-AMP $P_{IN} = 32 \text{ dBm}, V_{DD} = 28 \text{ V}$

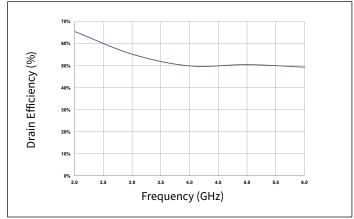


Figure 11. Drain Efficiency vs Frequency of the CGH40006P in the CGH40006P-AMP $P_{IN} = 32 \text{ dBm}, V_{DD} = 28 \text{ V}$

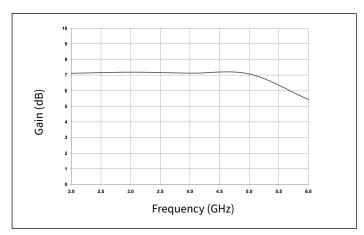


Figure 8. Power Gain vs Frequency of the CGH40006P in the CGH40006P-AMP $P_{IN} = 30 \text{ dBm}, V_{DD} = 20 \text{ V}$

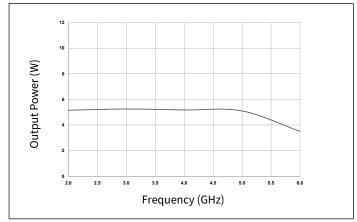


Figure 10. Output Power vs Frequency of the CGH40006P in the CGH40006P-AMP $P_{IN} = 30 \text{ dBm}, V_{DD} = 20 \text{ V}$

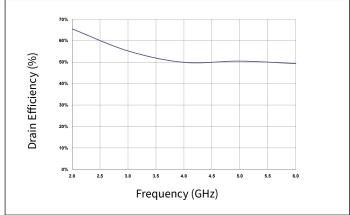


Figure 12. Drain Efficiency vs Frequency of the CGH40006P in the CGH40006P-AMP $P_{IN} = 30 \text{ dBm}, V_{DD} = 20 \text{ V}$

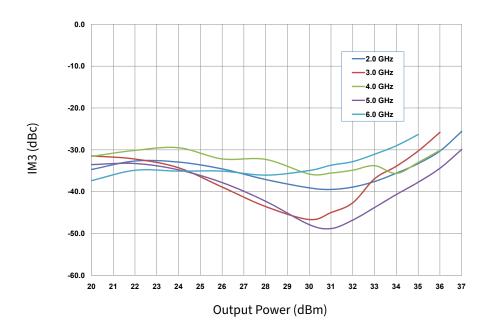


Figure 13. Third Order Intermodulation Distortion vs Average Output Power as a Function of Frequency of the CGH40006P in the CGH40006P-AMP $V_{DD} = 28 \text{ V}$, $I_{DO} = 60 \text{ mA}$

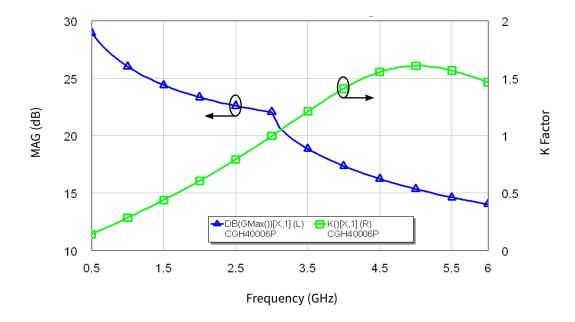
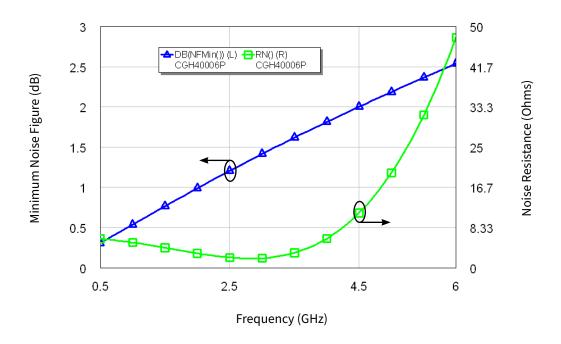
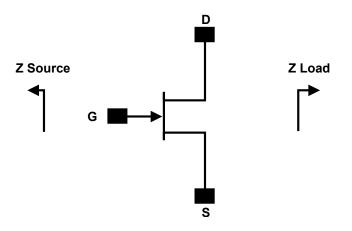


Figure 14. Simulated Maximum Available Gain and K Factor of the CGH40006P $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$

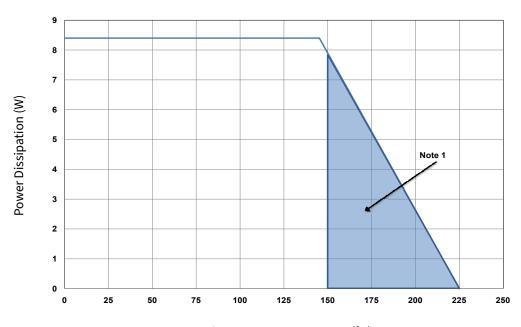
Typical Noise Performance




Figure 15. Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH40006P $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1B	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 C101-C


Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
1000	13.78 + j6.9	61.5 + j47.4
2000	4.78 + j1.78	19.4 + j39.9
3000	2.57 - j6.94	12.57 + j23.1
4000	3.54 - j14.86	9.44 + j11.68
5000	4.42 - j25.8	9.78 + j4.85
6000	7.1 - j42.7	9.96 - j4.38

Notes:

CGH40006P Power Dissipation De-rating Curve

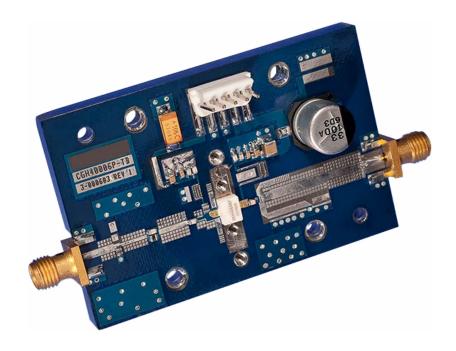
Maximum Case Temperature (°C)

Note:

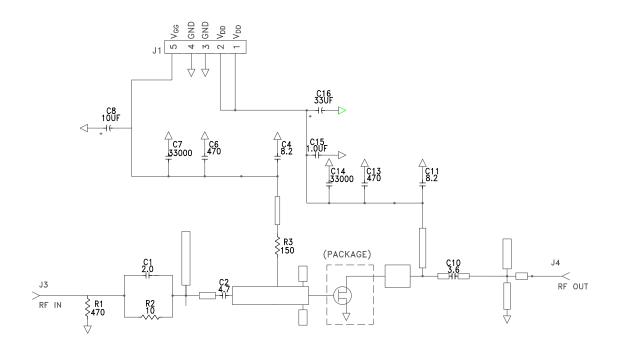
¹ Area exceeds Maximum Case Operating Temperature (See Page 2).

 $^{^{1}}$ V_{DD} = 28V, I_{DO} = 100mA in the 440109 package

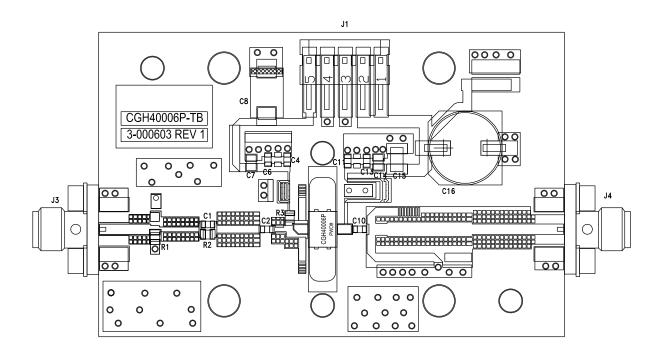
 $^{^{\}rm 2}$ Optimized for power gain, P_{SAT} and PAE


³ When using this device at low frequency, series resistors should be used to maintain amplifier stability

CGH40006P-AMP Demonstration Amplifier Circuit Bill of Materials

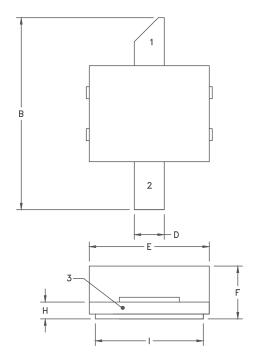

Designator	Description	Qty
R1	RES, AIN, 0505, 470 Ohms (≤5% tolerance)	1
R2	RES, AIN, 0505, 10 Ohms (≤5% tolerance)	1
R3	RES, AIN, 0505, 150 Ohms (≤5% tolerance)	1
C1	CAP, 2.0pF +/-0.1pF, 0603, ATC 600S	1
C2	CAP, 4.7pF +/-0.1pF, 0603, ATC 600S	1
C10	CAP, 3.6pF +/-0.1pF, 0603, ATC 600S	1
C4, C11	CAP, 8.2pF +/-0.25, 0603, ATC 600S	2
C6, C13	CAP, 470pF +/-5%, 0603, 100 V	2
C7, C14	CAP, 33000pF, CER, 100V, X7R, 0805	2
C8	CAP, 10μF, 16V, SMT, TANTALUM	1
C15	CAP, 1.0μF +/-10%, CER, 100V, X7R, 1210	1
C16	CAP, 33μF, 100V, ELECT, FK, SMD	1
J3, J4	CONN, SMA, STR, PANEL, JACK, RECP	2
J1	HEADER RT>PLZ .1CEN LK 5POS	1
-	PCB, RO5880, 20 MIL	1
Q1	CGH40006P	1

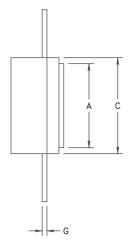
CGH40006P-AMP Demonstration Amplifier Circuit



CGH40006P-AMP Demonstration Amplifier Circuit Schematic

CGH40006P-AMP Demonstration Amplifier Circuit Outline


Typical Package S-Parameters for CGH40006P (Small Signal, V_{DS} = 28 V, I_{DQ} = 100 mA, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.905	-96.56	18.30	120.62	0.023	35.87	0.456	-52.76
600 MHz	0.889	-107.98	16.39	113.31	0.025	29.63	0.429	-58.98
700 MHz	0.877	-117.55	14.76	106.99	0.026	24.39	0.408	-64.31
800 MHz	0.867	-125.66	13.37	101.43	0.027	19.92	0.393	-68.96
900 MHz	0.860	-132.61	12.19	96.46	0.028	16.05	0.381	-73.11
1.0 GHz	0.854	-138.66	11.18	91.94	0.028	12.66	0.374	-76.87
1.1 GHz	0.849	-143.98	10.31	87.79	0.028	9.64	0.368	-80.34
1.2 GHz	0.845	-148.73	9.56	83.92	0.028	6.92	0.366	-83.57
1.3 GHz	0.842	-153.01	8.90	80.29	0.028	4.46	0.365	-86.61
1.4 GHz	0.839	-156.90	8.33	76.84	0.028	2.22	0.365	-89.49
1.5 GHz	0.837	-160.49	7.82	73.56	0.028	0.15	0.367	-92.24
1.6 GHz	0.835	-163.81	7.37	70.40	0.028	-1.75	0.369	-94.88
1.7 GHz	0.833	-166.92	6.96	67.36	0.028	-3.51	0.373	-97.43
1.8 GHz	0.832	-169.85	6.60	64.41	0.028	-5.15	0.376	-99.88
1.9 GHz	0.830	-172.62	6.27	61.54	0.028	-6.67	0.381	-102.27
2.0 GHz	0.829	-175.27	5.98	58.74	0.028	-8.08	0.386	-104.58
2.1 GHz	0.828	-177.81	5.71	56.00	0.028	-9.40	0.391	-106.84
2.2 GHz	0.827	179.75	5.46	53.32	0.027	-10.61	0.396	-109.04
2.3 GHz	0.826	177.38	5.24	50.68	0.027	-11.73	0.401	-111.19
2.4 GHz	0.825	175.07	5.03	48.09	0.027	-12.77	0.407	-113.29
2.5 GHz	0.824	172.82	4.84	45.53	0.027	-13.71	0.412	-115.36
2.6 GHz	0.823	170.61	4.67	43.00	0.026	-14.57	0.418	-117.38
2.7 GHz	0.821	168.44	4.51	40.50	0.026	-15.34	0.423	-119.36
2.8 GHz	0.820	166.30	4.36	38.02	0.026	-16.02	0.428	-121.32
2.9 GHz	0.819	164.18	4.22	35.57	0.026	-16.62	0.434	-123.24
3.0 GHz	0.818	162.08	4.09	33.13	0.026	-17.13	0.439	-125.13
3.2 GHz	0.816	157.91	3.85	28.31	0.025	-17.89	0.449	-128.84
3.4 GHz	0.813	153.76	3.65	23.53	0.025	-18.30	0.458	-132.46
3.6 GHz	0.810	149.58	3.47	18.78	0.025	-18.38	0.467	-136.00
3.8 GHz	0.807	145.35	3.31	14.05	0.024	-18.13	0.474	-139.48
4.0 GHz	0.804	141.05	3.18	9.32	0.024	-17.60	0.481	-142.91
4.2 GHz	0.801	136.66	3.05	4.57	0.024	-16.82	0.488	-146.30
4.4 GHz	0.797	132.15	2.94	-0.20	0.025	-15.89	0.493	-149.67
4.6 GHz	0.793	127.50	2.85	-5.01	0.025	-14.87	0.497	-153.02
4.8 GHz	0.789	122.70	2.76	-9.86	0.026	-13.89	0.500	-156.37
5.0 GHz	0.785	117.72	2.68	-14.79	0.027	-13.04	0.503	-159.74
5.2 GHz	0.780	112.55	2.62	-19.78	0.029	-12.42	0.504	-163.14
5.4 GHz	0.776	107.17	2.55	-24.86	0.030	-12.13	0.505	-166.59
5.6 GHz	0.772	101.58	2.50	-30.03	0.032	-12.22	0.504	-170.10
5.8 GHz	0.768	95.76	2.44	-35.30	0.035	-12.75	0.503	-173.70
6.0 GHz	0.764	89.70	2.40	-40.69	0.037	-13.73	0.501	-177.41

To download the s-parameters in s2p format, go to the CGH40006P Product Page.

Product Dimensions CGH40006P (Package Type — 440109)

NOTES: (UNLESS OTHERWISE SPECIFIED)

- INTERPRET DRAWING IN ACCORDANCE WITH ANSI Y14.5M-1982 DIMENSIONING AND TOLERANCING.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ALL PLATED SURFACES ARE Ni/Au

	INCHES		MILLIN	IETERS		
DIM	MIN	MAX	MIN	MAX		
Α	.135	.145	3.43	3.68		
В	.315	.325	8.00	8.26		
С	.155	.165	3.94	4.19		
D	.045	.055	1.14	1.40		
Е	.195	.205	4.95	5.21		
F	.085	.104	2.15	2.65		
G	.007	.009	.178	0.23		
Н	.026	.030	.660	.762		
1	.175	.185	4.45	4.70		

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH40006P	GaN HEMT	Each	CGH40006P
CGH40006P-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.