

CGH35060F1/P1

60 W, 3.3-3.6 GHz, 28V, GaN HEMT for WiMAX, **Broadband Wireless Access**

Description

The CGH35060F F1/P1 is a gallium nitride (GaN) high electron mobility transistor(HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH35060F ideal for 3.3-3.6 GHz WiMAX and BWA linear amplifier applications. The transistor is supplied in a ceramic/metal flange and pill package. The GaN-on-Silicon Carbide instead HEMTs are highly correctable, enabling even greater efficiency when used with digital pre-distortion (DPD).

Package Types: 440193 and 440196 PNs: CGH35060F1 and CGH35060P1

Typical Performance Over 3.3-3.6 GHz ($T_c = 25^{\circ}$ C) of Demonstration Amplifier

Parameter	3.3 GHz	3.4 GHz	3.5 GHz	3.6 GHz	Units
Small Signal Gain	11.7	12.2	12.6	12.8	dB
EVM @ 26 dBm	2.05	1.82	1.56	1.80	%
EVM @ 39 dBm	1.91	1.83	1.98	2.86	%
Drain Efficiency @ 39 dBm	22.0	23.1	24.9	26.7	%
Input Return Loss	8.0	10.3	12.5	13.1	dB

Measured in the CGH35060F1-AMP amplifier circuit, under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, PAR = 9.8 dB @ 0.01% Probability on CCDF.

Features

- 3.3 3.6 GHz Operation
- 60 W Peak Power Capability
- 12 dB Small Signal Gain
- $8.0 \text{ W P}_{AVE} \text{ at} < 2.0\% \text{ EVM}$
- 25% Drain Efficiency at 8 W PAVE

- WiMAX Fixed Access 802.16-2004 OFDM
- WiMAX Mobile Access 802.16e OFDMA

RoHS

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	W	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Power Dissipation	P _{DISS}	28	W	
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225	30	
Maximum Forward Gate Current	I _{GMAX}	15	mA	- 25°C
Maximum Drain Current ¹	I _{DMAX}	6	Α	- 25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	R _{θJC}	2.8	°C/W	85°C
Case Operating Temperature ³	T _C	-40, +150	°C	

Notes:

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions		
DC Characteristics ¹								
Gate Threshold Voltage	V _{GS(th)}	-3.8	2.0	-2.3	· ·	V _{DS} = 10 V, I _D = 14.4 mA		
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-3.0	_	V _{DC}	$V_{DS} = 28 \text{ V}, I_{D} = 250 \text{ mA}$		
Saturated Drain Current	I _{DS}	11.6	14.0	-	Α	$V_{DS} = 6 \text{ V}, V_{GS} = 2 \text{ V}$		
Drain-Source Breakdown Voltage	V _{BR}	84	_	-	V _{DC}	$V_{GS} = -8 \text{ V}, I_D = 14.4 \text{ mA}$		
RF Characteristics ^{2,3} ($T_c = 25$ °C, $F_0 =$	RF Characteristics ^{2,3} (T _c = 25°C, F ₀ = 3.5 GHz unless otherwise noted)							
Small Signal Gain	Gss	10	11.5	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}$		
Drain Efficiency⁴	η	19	23	-		V _{DD} = 28 V, I _{DQ} = 250 mA, P _{AVE} = 8 W		
Back-Off Error Vector Magnitude	EVM	-	2.5	-	%	V _{DD} = 28 V, I _{DQ} = 250 mA, P _{AVE} = 24 dBm		
Error Vector Magnitude	EVIVI	_	2.0	2.5		$V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}, P_{AVE} = 8 \text{ W}$		
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 250 \text{ mA}$		
Dynamic Characteristics								
Input Capacitance	C _{GS}	_	19.0	_				
Output Capacitance	C _{DS}	_	5.9	_	pF	$V_{DS} = 28 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$		
Feedback Capacitance	C _{GD}	_	0.8	_				

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 $^{^{3}}$ Measured for the CGH35060F1 at P_{DISS} = 28 W.

¹ Measured on wafer prior to packaging.

² Measured in the CGH35060F1-AMP test fixture

³ Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding RateType 2/3, PAR = 9.8 dB @ 0.01% Probability on CCDF

 $^{^{4}}$ Drain Efficiency = P_{OUT} / P_{DC}

Typical WiMAX Performance

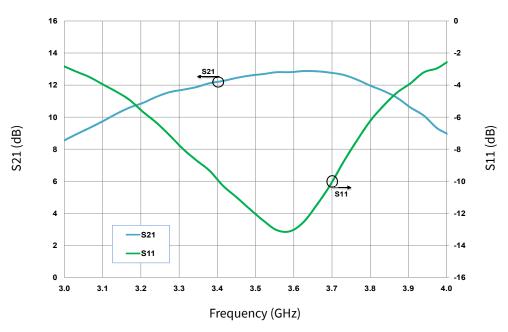


Figure 1. Gain and Return Loss vs Frequency measured in Broadband Amplifier Circuit CGH35060F1-AMP $V_{DD}=28\ V,\ I_{DQ}=250\ mA$

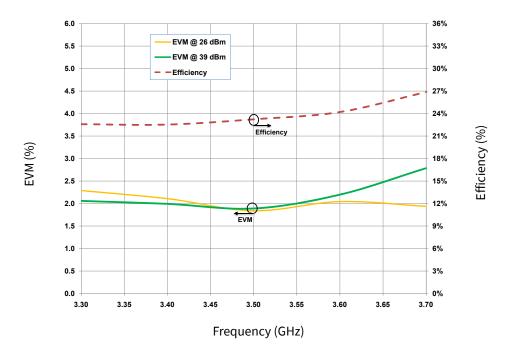


Figure 2. Typical EVM at 26 dBm and 39 dBm, and Efficiency vs Frequency measured in Broadband Amplifier CircuitCGH35060F1-AMP V_{DD} = 28 V, I_{DO} = 250 mA

Note:

¹802.16-2004 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3

Typical WiMAX Performance

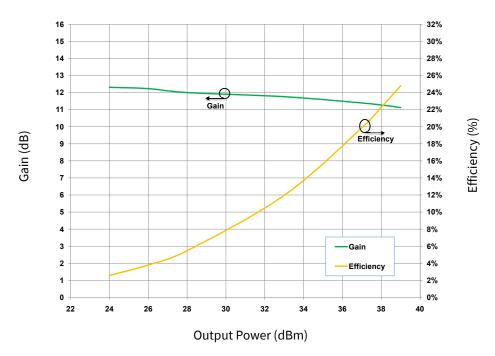


Figure 3. Drain Efficiency and Gain vs Output Power measured in the CGH35060F1-AMP $V_{DD} = 28 \text{ V}, I_{DO} = 250 \text{ mA}, 802.16-2004 \text{ OFDM}, PAR = 9.8 \text{ dB}$

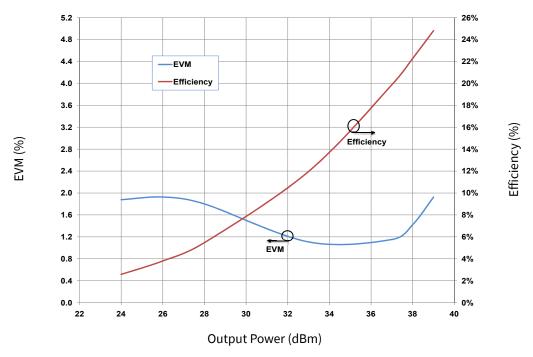


Figure 4. Typical EVM and Efficiency vs Output Power measured in the CGH35060F1-AMP $V_{DD} = 28 \text{ V}, I_{DO} = 250 \text{ mA}, 802.16-2004 OFDM, PAR=9.8 dB}$

¹ Under 802.16-2004 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance

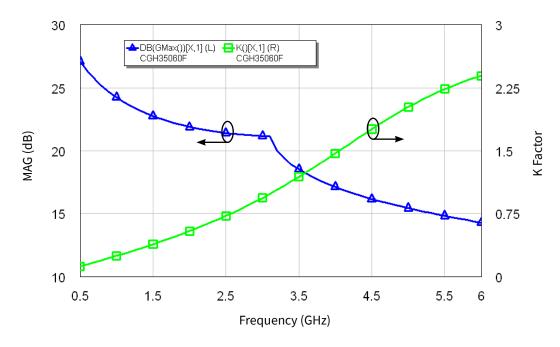
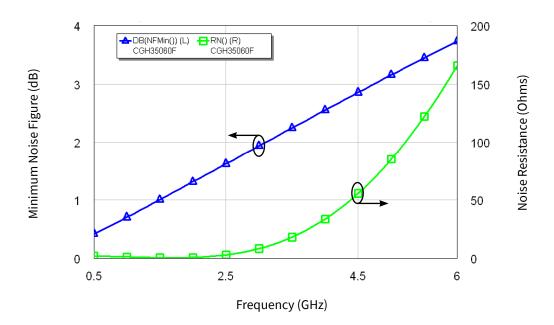



Figure 5. Simulated Maximum Available Gain and K Factor of the CGH35060F1 and CGH35060P1 $V_{DD} = 28 \text{ V}, I_{DQ} = 250 \text{ mA}$

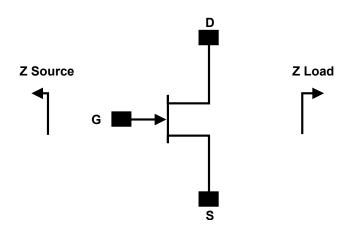

Typical Noise Performance

Figure 6. Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH35060 $V_{DD} = 28 \text{ V}$, $I_{DO} = 250 \text{ mA}$

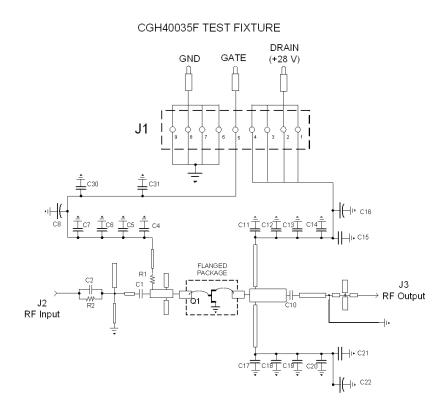
Source and Load Impedances

Frequency (MHz)	Z Source	Z Lead
3300	3.5 – j12.1	6.5 – j6.8
3400	3.5 – j11.4	6.0 – j5.9
3500	3.3 – j10.7	5.6 – j5.1
3600	3.2 – j10.0	5.4 – j4.3

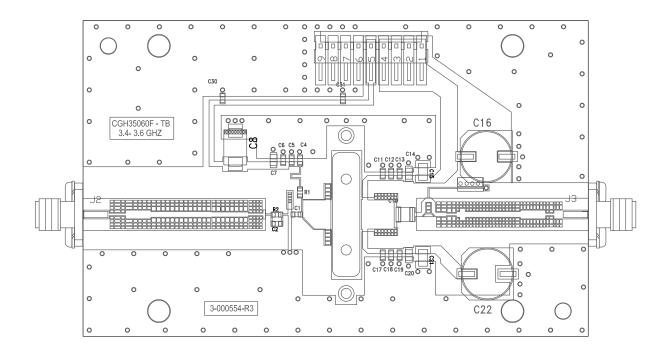
Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

 $^{^{1}}$ V_{DD} = 28V, I_{DQ} = 250mA in the 440193 package 2 Impedances are extracted from the CGH35060F1-AMP demonstration amplifier and are not source and load pull data derived from the transistor

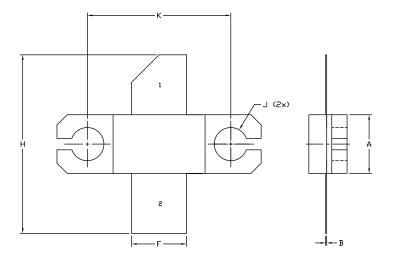


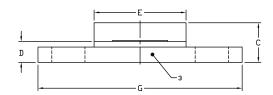
CGH35060F1-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
R1	RES, 1/16W, 0603, 1%, 5.1 OHMS	1
R2	RES, 1/16W, 0603, 1%, 100 OHMS	1
C6,C13,C19	CAP, 470pF, 5%,100V, 0603	3
C16,C22	CAP, 33μF, 20%, G CASE	2
C15,C21	CAP, 1.0μF, 100V, 10%, X7R, 1210	2
C8	CAP 10μF 16V TANTALUM	1
C4,C11,C17	CAP, 7.5pF, +/-0.1pF, 0603, ATC	3
C1	CAP, 0.6pF, +/-0.05pF, 0603, ATC	2
C2	CAP, 1.2pF, +/-0.1pF, 0603, ATC	1
C10	CAP, 4.7pF, +/-0.25pF, 100B, ATC	3
C5,C12,C18,C30,C31	CAP, 47pF, +/-5%, 0603, ATC	5
C7,C14.C20	CAP, 33000pF, 0805, 100V, X7R	2
J2,J3	CONN, SMA, PANEL MOUNT JACK, FLANGE	2
J1	HEADER RT>PLZ .1CEN LK 5POS	1
Q1	CGH35060F1	1

CGH35060F1-AMP Demonstration Amplifier Circuit Schematic

CGH35060F1-AMP Demonstration Amplifier Circuit Outline


Typical Package S-Parameters for CGH35060F1/P1 (Small Signal, V_{DS} = 28 V, I_{DQ} = 250 mA, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.932	-170.73	7.26	79.93	0.014	-5.48	0.616	-170.30
600 MHz	0.933	-173.14	6.04	75.95	0.014	-8.53	0.624	-170.60
700 MHz	0.933	-175.02	5.17	72.27	0.014	-11.26	0.632	-170.73
800 MHz	0.934	-176.56	4.51	68.80	0.014	-13.77	0.640	-170.79
900 MHz	0.935	-177.90	3.99	65.50	0.014	-16.12	0.648	-170.84
1.0 GHz	0.936	-179.09	3.58	62.32	0.014	-18.33	0.657	-170.91
1.1 GHz	0.937	179.82	3.24	59.24	0.013	-20.41	0.666	-171.02
1.2 GHz	0.937	178.80	2.96	56.27	0.013	-22.38	0.675	-171.18
1.3 GHz	0.938	177.82	2.73	53.38	0.013	-24.25	0.684	-171.38
1.4 GHz	0.939	176.88	2.53	50.57	0.013	-26.02	0.693	-171.64
1.5 GHz	0.940	175.95	2.35	47.83	0.012	-27.69	0.702	-171.94
1.6 GHz	0.941	175.04	2.20	45.17	0.012	-29.28	0.710	-172.30
1.7 GHz	0.942	174.13	2.07	42.56	0.012	-30.78	0.718	-172.69
1.8 GHz	0.942	173.22	1.96	40.01	0.012	-32.20	0.726	-173.13
1.9 GHz	0.943	172.30	1.86	37.51	0.012	-33.53	0.733	-173.60
2.0 GHz	0.943	171.37	1.77	35.06	0.011	-34.79	0.740	-174.11
2.1 GHz	0.944	170.42	1.69	32.65	0.011	-35.98	0.746	-174.64
2.2 GHz	0.944	169.44	1.62	30.28	0.011	-37.09	0.752	-175.21
2.3 GHz	0.944	168.44	1.56	27.94	0.011	-38.14	0.757	-175.80
2.4 GHz	0.944	167.42	1.51	25.63	0.011	-39.12	0.762	-176.41
2.5 GHz	0.944	166.35	1.47	23.33	0.011	-40.03	0.767	-177.05
2.6 GHz	0.944	165.25	1.43	21.06	0.010	-40.89	0.771	-177.70
2.7 GHz	0.944	164.10	1.39	18.79	0.010	-41.69	0.775	-178.38
2.8 GHz	0.943	162.90	1.36	16.52	0.010	-42.44	0.778	-179.08
2.9 GHz	0.943	161.64	1.34	14.25	0.010	-43.15	0.780	-179.81
3.0 GHz	0.942	160.32	1.32	11.97	0.010	-43.81	0.783	179.45
3.2 GHz	0.939	157.45	1.29	7.34	0.010	-45.03	0.786	177.90
3.4 GHz	0.936	154.21	1.29	2.56	0.010	-46.16	0.787	176.26
3.6 GHz	0.932	150.50	1.30	-2.45	0.010	-47.28	0.786	174.50
3.8 GHz	0.926	146.18	1.32	-7.79	0.010	-48.49	0.783	172.62
4.0 GHz	0.918	141.08	1.37	-13.59	0.011	-49.93	0.778	170.58
4.2 GHz	0.907	134.91	1.45	-20.01	0.011	-51.79	0.770	168.35
4.4 GHz	0.893	127.31	1.55	-27.29	0.012	-54.34	0.759	165.88
4.6 GHz	0.875	117.74	1.68	-35.72	0.013	-57.92	0.745	163.12
4.8 GHz	0.851	105.40	1.85	-45.68	0.014	-62.99	0.726	159.95
5.0 GHz	0.821	89.23	2.06	-57.67	0.016	-70.09	0.701	156.25
5.2 GHz	0.788	67.93	2.29	-72.20	0.018	-79.82	0.668	151.81
5.4 GHz	0.763	40.72	2.50	-89.57	0.019	-92.51	0.624	146.32
5.6 GHz	0.760	8.85	2.62	-109.47	0.021	-107.92	0.563	139.43
5.8 GHz	0.789	-23.42	2.60	-130.80	0.021	-124.97	0.479	130.69
6.0 GHz	0.837	-51.66	2.44	-152.19	0.020	-142.29	0.367	119.31

To download the s-parameters in s2p format, go to the CGH35060F1/P1 Product Page.

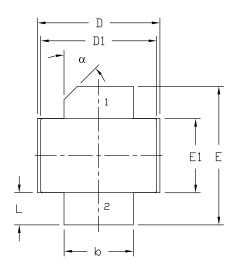
Product Dimensions CGH35060F1 (Package Type — 440193)

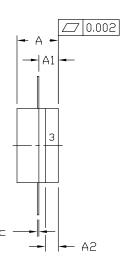
NOTES

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020 BEYOND EDGE OF LID.


4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION


5. ALL PLATED SURFACES ARE NI/A

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.225	0.235	5.72	5.97	
В	0.004	0.006	0.10	0.15	
С	0.145	0.165	3.68	4.19	
D	0.077	0.087	1.96	2.21	
Ε	0.355	0.365	9.02	9.27	
F	0.210	0.220	5.33	5.59	
G	0.795	0.805	20.19	20.45	
Н	0.670	0.730	17.02	18.54	
J	ø.	130	3.30		
k	0.5	62	14.28		

PIN 1. GATE PIN 2. DRAIN

Product Dimensions CGH35060P1 (Package Type — 440206)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

	INCHES		MILLIM	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.125	0.145	3.18	3.68	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.210	0.220	5.33	5.59	2x
С	0.004	0.006	0.10	0.15	2x
D	0.375	0.385	9.53	9.78	
D1	0.355	0.365	9.02	9.27	
E	0.400	0.460	10.16	11.68	
E1	0.225	0.235	5.72	5.97	
L	0.085	0.115	2.16	2.92	2x
α	45° REF		45* REF		

PIN 1. GATE

- 2. DRAIN
- 3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH35060F1	GaN HEMT	Each	CCHESOCON CCHESOCON
CGH35060P1	GaN HEMT	Each	ccH3506081
CGH35060F1-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.