

CGH35015

15 W, 3.3-3.9 GHz, 28V, GaN HEMT for WiMAX

Description

The CGH35015 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for 802.16-2004 WiMAX Fixed Access applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities, which makes the CGH35015 ideal for 3.3-3.9 GHz WiMAX and BWA amplifier applications. The transistor is available in both screw-down, flange and solder-down, pill packages.

Package Types: 440166 and 440196 PNs: CGH35015F and CGH35015P

Typical Performance Over 3.3-3.8 GHz ($T_c = 25^{\circ}$ C) of Demonstration Amplifier

Parameter	3.3 GHz	3.4 GHz	3.5 GHz	3.6 GHz	3.7 GHz	3.8 GHz	Units
Small Signal Gain	13.6	12.8	12.3	12.2	12.3	12.8	dB
EVM at P _{AVE} = 24 dBm	2.71	2.31	2.1	2.12	2.54	3.04	%
EVM at P _{AVE} = 33 dBm	2.63	2.29	1.93	1.70	1.70	2.14	%
Drain Efficiency at P _{AVE} = 33 dBm	24.0	25.5	26.1	25.6	23.8	2.38	%

Measured in the CGH35015F-AMP amplifier circuit, under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, PAR = 9.8 dB @ 0.01% Probability on CCDF.

Features

- 3.3 3.9 GHz Operation
- 15 W Peak Power Capability
- 12 dB Small Signal Gain
- $2.0 \text{ W P}_{AVE} \text{ at} < 2.0\% \text{ EVM}$
- 26% Efficiency at 2 W Average Power

- WiMAX Fixed Access 802.16-2004 OFDM
- WiMAX Mobile Access 802.16e OFDMA

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	V	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Power Dissipation	P _{DISS}	7	W	
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	4.0	mA	3500
Maximum Drain Current ¹	I _{DMAX}	1.5	А	- 25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	$R_{\theta JC}$	8.0	°C/W	85°C
Case Operating Temperature ³	T _C	-40, +150	°C	

Notes:

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹							
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	.,	$V_{DS} = 10 \text{ V, } I_{D} = 3.6 \text{ mA}$	
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	$V_{DS} = 28 \text{ V}, I_D = 60 \text{ mA}$	
Saturated Drain Current	I _{DS}	2.9	3.5	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$	
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	84	_	_	V _{DC}	V _{GS} = -8 V, I _D = 3.6 mA	
RF Characteristics ^{2,3} (T _c = 25°C, F	ີ = 3.5 GHz ພ	nless oth	erwise r	noted)			
Small Signal Gain	G _{SS}	10.5	12	_	dB	V _{DD} = 28 V, I _{DQ} = 100 mA	
Drain Efficiency⁴	η	22	26	_		V _{DD} = 28 V, I _{DQ} = 100 mA, P _{AVE} = 2.0 W	
Back-Off Error Vector Magnitude	E) (A.4	_	2.5	_	%	V _{DD} = 28 V, I _{DQ} = 100 mA, P _{AVE} = 18 dBm	
Error Vector Magnitude	EVM	_	2.5	_]	V _{DD} = 28 V, I _{DQ} = 100 mA, P _{AVE} = 2.0 W	
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, V _{DD} = 28 V, I _{DQ} = 100 mA, P _{AVE} = 2.0 W	
Dynamic Characteristics							
Input Capacitance	C _{GS}	_	4.5	_			
Output Capacitance	C _{DS}	_	1.3	_	pF	$V_{DS} = 28 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$	
Feedback Capacitance	C_GD	_	0.2	_]		

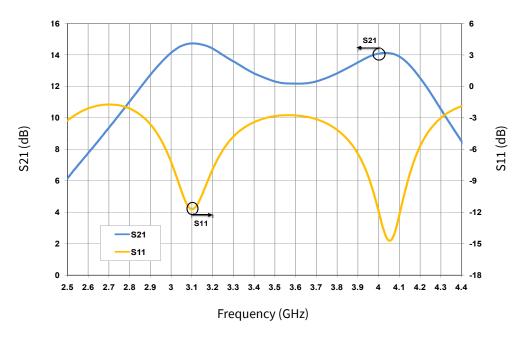
Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 $^{^{\}rm 3}$ Measured for the CGH35015 at P $_{\rm DISS}$ = 7 W.

¹ Measured on wafer prior to packaging


² Measured in the CGH35015F-AMP test fixture

³ Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, PAR = 9.8 dB @ 0.01% Probability on CCDF

⁴ Drain Efficiency = P_{OUT} / P_{DC}

Typical WiMAX Performance

Figure 1. Small Signal S-Parameters vs Frequency measured in the CGH35015F-AMP V_{DD} = 28 V, I_{DQ} = 100 mA

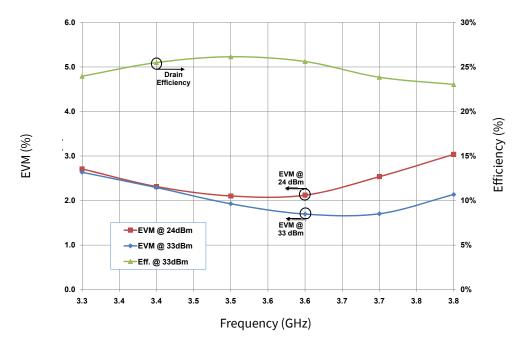


Figure 2. Typical EVM and Efficiency versus Frequency measured in the CGH35015F-AMP $V_{DD} = 28 \text{ V}$, $I_{DQ} = 100 \text{ mA}$, 802.16-2004 OFDM, PAR = 9.8 dB

Note:

1802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3

Typical WiMAX Performance

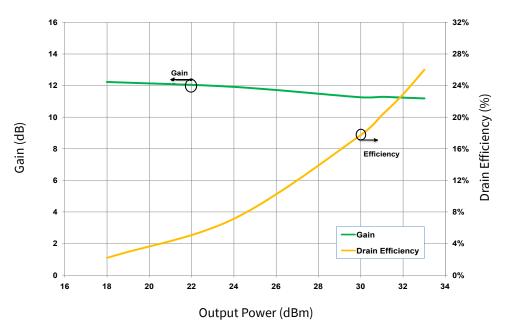


Figure 3. Drain Efficiency and Gain vs Output Power measured in the CGH35015F-AMP $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}, 802.16-2004 OFDM, PAR} = 9.8 \text{ dB}$

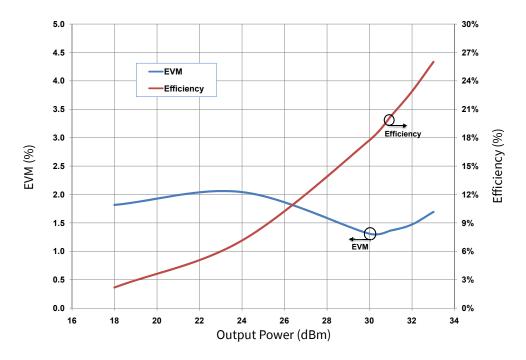


Figure 4. Typical EVM and Efficiency vs Output Power measured in the CGH35015F-AMP $V_{DD} = 28 \text{ V}, I_{DO} = 100 \text{ mA}, 802.16-2004 OFDM, PAR} = 9.8 \text{ dB}$

¹ Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3

Typical Performance

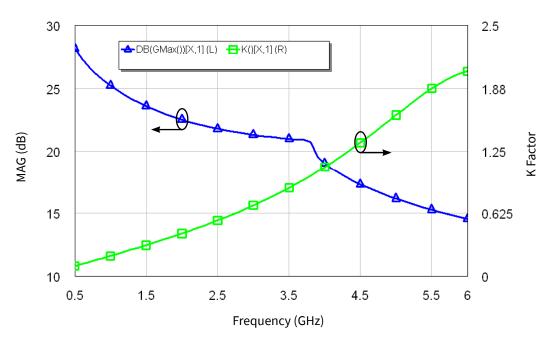
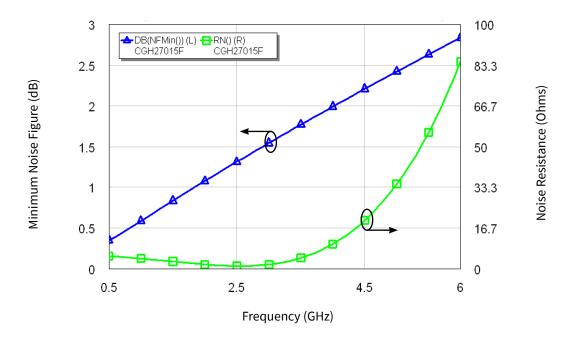



Figure 5. Simulated Maximum Available Gain and K Factor of the CGH35015 $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$

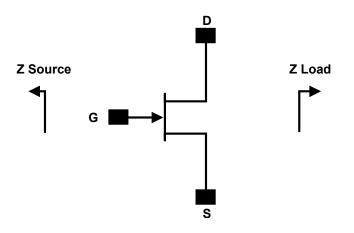

Typical Noise Performance

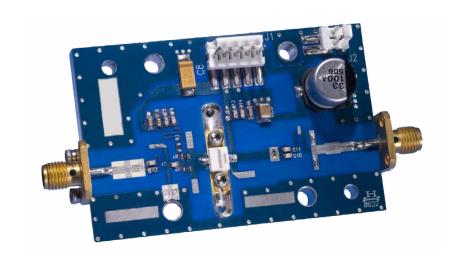
Figure 6. Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH35015 $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$

Source and Load Impedances

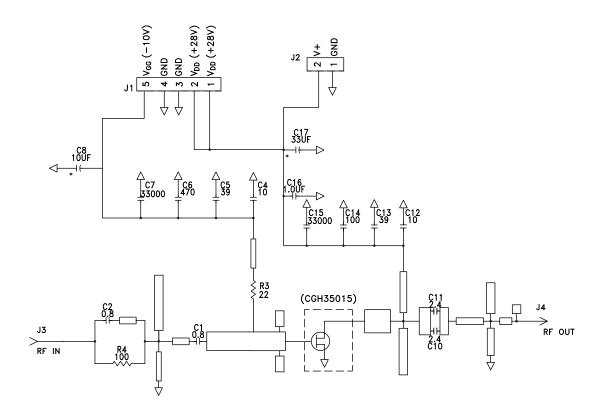
Frequency (MHz)	Z Source	Z Load
3300	13.0 - j5.6	13.2 - j2.8
3400	17.2 - j6.0	13.2 - j2.8
3500	20.8 - j9.9	13.1 - j2.9
3600	20.1 - j15.8	13.1 - j3.3
3700	15.7 - j19.0	12.3 - j3.8

Electrostatic Discharge (ESD) Classifications

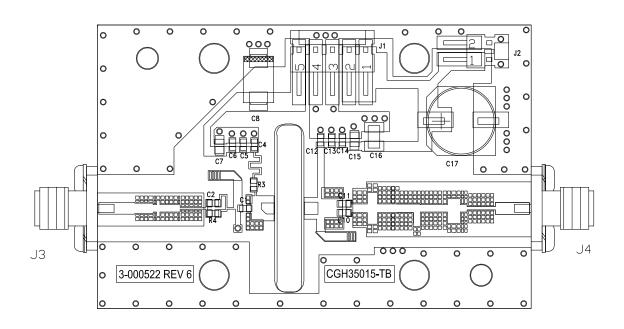
Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C


 $^{^{1}}$ V_{DD} = 28V, I_{DQ} = 115 mA in the 440166 package 2 Impedances are extracted from the CGH35015F-AMP demonstration amplifier and are not source and load pull data derived from the transistor

CGH35015F-AMP Demonstration Amplifier Circuit Bill of Materials

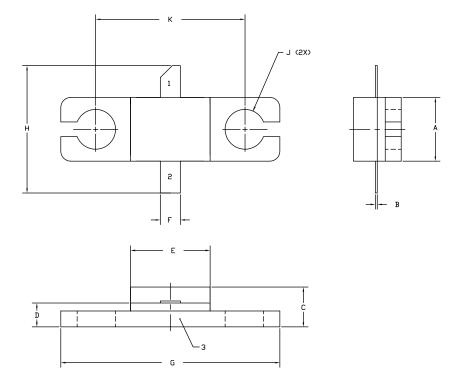

Designator	Description	Qty
C1, C2	CAP, 0.8pF, +/-0.1pF, 0603, ATC 600S	2
C10, C11	CAP, 2.4pF,+/-0.1pF, 0603, ATC 600S	2
C4, C12	CAP, 10.0pF, +/-5%, 0603, ATC 600S	1
C5, C13	CAP, 39pF ±5%, 0603, ATC 600S	2
C14	CAP, 100pF ±5%, 0603, ATC 600S	1
C6	CAP, 470pF ±10%, 100V, 0603	1
C7, C15	CAP, 33000pF, 100V, 0805, X7R	2
C8	CAP, 10µF, 16V, SMT, TANTALUM (240096)	1
C16	CAP, 1.0μF ±10%, 100V, 1210, X7R	1
C17	CAP, 33μF, 100V, ELECT, FK, SMD	1
R3	RES, 1/16W, 0603, 22 Ohms ≤5%	1
R4	RES, 1/16W, 0603, 100 Ohms ≤5%	1
J1	5-PIN, MOLEX, MALE, CONNECTOR	1
J2	2-PIN, MOLEX, MALE, CONNECTOR	1
J3, J4	SMA, FEMALE, CONNECTOR	2
-	PCB, RO4350B, Er = 3.48, h = 20 mil	1
-	CGH35015F or CGH35015P	1

CGH35015F-AMP Demonstration Amplifier Circuit



CGH35015-AMP Demonstration Amplifier Circuit Schematic

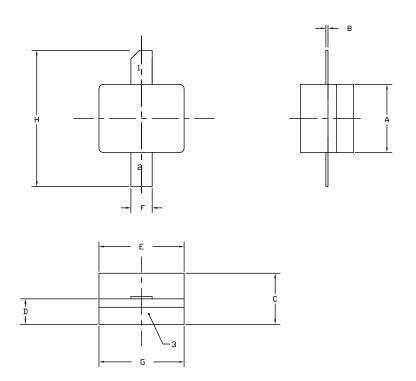
CGH35015-AMP Demonstration Amplifier Circuit Outline


Typical Package S-Parameters for CGH35015 (Small Signal, V_{DS} = 28 V, I_{DQ} = 100 mA, angle in degrees)

Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.909	-124.41	17.41	107.81	0.026	21.06	0.335	-93.73
600 MHz	0.902	-134.04	15.04	101.48	0.027	15.39	0.322	-101.61
700 MHz	0.898	-141.62	13.18	96.16	0.028	10.74	0.315	-107.78
800 MHz	0.894	-147.78	11.71	91.54	0.028	6.79	0.312	-112.73
900 MHz	0.892	-152.91	10.51	87.43	0.028	3.35	0.312	-116.77
1.0 GHz	0.890	-157.30	9.53	83.68	0.028	0.28	0.314	-120.15
1.1 GHz	0.889	-161.12	8.71	80.20	0.028	-2.51	0.318	-123.04
1.2 GHz	0.889	-164.51	8.01	76.95	0.028	-5.07	0.322	-125.57
1.3 GHz	0.888	-167.56	7.41	73.86	0.028	-7.45	0.328	-127.82
1.4 GHz	0.888	-170.34	6.89	70.91	0.028	-9.69	0.335	-129.87
1.5 GHz	0.888	-172.91	6.44	68.07	0.028	-11.81	0.342	-131.77
1.6 GHz	0.888	-175.30	6.04	65.32	0.028	-13.82	0.349	-133.56
1.7 GHz	0.888	-177.55	5.69	62.65	0.027	-15.74	0.357	-135.25
1.8 GHz	0.888	-179.68	5.37	60.05	0.027	-17.58	0.364	-136.89
1.9 GHz	0.888	178.29	5.09	57.50	0.027	-19.34	0.373	-138.48
2.0 GHz	0.888	176.34	4.83	55.01	0.027	-21.04	0.381	-140.03
2.1 GHz	0.889	174.45	4.60	52.56	0.026	-22.69	0.389	-141.55
2.2 GHz	0.889	172.63	4.39	50.14	0.026	-24.27	0.397	-143.06
2.3 GHz	0.889	170.84	4.20	47.76	0.026	-25.80	0.405	-144.56
2.4 GHz	0.889	169.10	4.02	45.41	0.025	-27.28	0.413	-146.04
2.5 GHz	0.890	167.39	3.86	43.09	0.025	-28.70	0.421	-147.52
2.6 GHz	0.890	165.71	3.71	40.79	0.025	-30.08	0.429	-149.00
2.7 GHz	0.891	164.04	3.57	38.51	0.024	-31.41	0.437	-150.48
2.8 GHz	0.891	162.39	3.44	36.26	0.024	-32.69	0.445	-151.95
2.9 GHz	0.891	160.76	3.32	34.01	0.024	-33.92	0.452	-153.43
3.0 GHz	0.892	159.13	3.21	31.79	0.023	-35.10	0.459	-154.92
3.2 GHz	0.892	155.89	3.00	27.38	0.023	-37.31	0.473	-157.90
3.4 GHz	0.893	152.65	2.83	23.00	0.022	-39.32	0.486	-160.90
3.6 GHz	0.893	149.39	2.67	18.66	0.021	-41.09	0.499	-163.93
3.8 GHz	0.894	146.09	2.54	14.34	0.020	-42.63	0.510	-166.99
4.0 GHz	0.894	142.74	2.41	10.02	0.020	-43.90	0.521	-170.10
4.2 GHz	0.895	139.33	2.31	5.70	0.019	-44.88	0.530	-173.24
4.4 GHz	0.895	135.84	2.21	1.37	0.018	-45.53	0.539	-176.45
4.6 GHz	0.895	132.26	2.12	-2.98	0.018	-45.84	0.547	-179.71
4.8 GHz	0.895	128.59	2.04	-7.36	0.017	-45.78	0.554	176.97
5.0 GHz	0.895	124.80	1.97	-11.79	0.016	-45.32	0.561	173.56
5.2 GHz	0.895	120.90	1.91	-16.27	0.016	-44.47	0.566	170.07
5.4 GHz	0.895	116.87	1.85	-20.81	0.016	-43.25	0.571	166.48
5.6 GHz	0.895	112.70	1.80	-25.41	0.015	-41.72	0.575	162.78
5.8 GHz	0.895	108.38	1.75	-30.10	0.015	-39.97	0.579	158.96
6.0 GHz	0.895	103.92	1.70	-34.88	0.016	-38.13	0.581	155.00

To download the s-parameters in s2p format, go to the CGH35015 Product Page.

Product Dimensions CGH35015F (Package Type — 440166)


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.155	0.165	3.94	4.19	
В	0.004	0.006	0.10	0.15	
С	0.115	0.135	2.92	3.43	
D	0.057	0.067	1.45	1.70	
E	0.195	0.205	4.95	5.21	
F	0.045	0.055	1.14	1.40	
G	0.545	0.555	13.84	14.09	
Н	0.280	0.360	7.11	9.14	
J	ø.	100	2.54		
K	0.3	75	9.53		

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGH35015P (Package Type — 440196)

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020 BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.155	0.165	3.94	4.19
В	0.003	0.006	0.10	0.15
С	0.115	0.135	2.92	3.17
D	0.057	0.067	1.45	1.70
E	0.195	0.205	4.95	5.21
F	0.045	0.055	1.14	1.40
G	0.195	0.205	4.95	5.21
Н	0.280	0.360	7.11	9.14

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH35015F	GaN HEMT	Each	CGH35015F 27703
CGH35015P	GaN HEMT	Each	CGH35015P
CGH35015-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.