

CGH31240F

240 W, 2.7-3.1 GHz, 50-ohm Input/Output Matched, GaN HEMT for S-Band Radar Systems

Description

The CGH31240F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGH31240F ideal for 2.7-3.1 GHz S-Band radar amplifier applications. The transistor is supplied in a ceramic/metal flange package.

Package Types: 440201 PN: CGH31240F

Typical Performance Over 2.7-3.1 GHz ($T_c = 25^{\circ}$ C) of Demonstration Amplifier

Parameter	2.7 GHz	2.8 GHz	2.9 GHz	3.0 GHz	3.1 GHz	Units
Output Power	243	249	249	245	243	W
Gain	11.9	11.9	11.9	11.9	11.9	dB
Power Added Efficiency	60	61	60	59	52	%

Measured in the CGH31240F-AMP amplifier circuit, under 300μs pulse width, 20% duty cycle, P_{IN} = 42 dBm

Features

- 2.7 3.1 GHz Operation
- 12 dB Power Gain
- 60% Power Added Efficiency
- < 0.2 dB Pulsed Amplitude Droop

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Pulse Width	PW	1	ms	
Duty Cycle	DC	50	%	
Drain-Source Voltage	V _{DSS}	120	V	2500
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Power Dissipation	P _{DISS}	345	W	
Storage Temperature	T _{STG}	-65, +150	0.0	
Operating Junction Temperature	TJ	225	°C	
Maximum Forward Gate Current	I _{GMAX}	60	mA	2500
Maximum Drain Current ¹	I _{DMAX}	24	А	− 25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	R _{eJC}	0.5	°C/W	85°C
Case Operating Temperature ³	T _c	-40, +150	°C	30 seconds

Notes:

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	.,	$V_{DS} = 10 \text{ V, } I_D = 57.6 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	V _{DS} = 28 V, I _D = 1.0 mA
Saturated Drain Current ²	I _{DS}	46.4	56.0	_	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR}	84	_	_	V _{DC}	$V_{GS} = -8 \text{ V}, I_D = 57.6 \text{ mA}$
RF Characteristics 3 (T _c = 25 $^{\circ}$ C, F ₀ =	2.7, 2.9, 3.1	GHz un	less othe	rwise no	oted)	
Output Power	Роит	200	250	_	W	
Power Added Efficiency at 2.7 GHz		49	54	_		
Power Added Efficiency at 2.9 GHz	PAE	52	58	_	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = 42 \text{ dBm}$
Power Added Efficiency at 3.1 GHz		42	49	_]	
Power Gain	G _P	11	12	_	I.D.	
Small Signal Gain	S21	14	16	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = -10 \text{ dBm}$
Input Return Loss	S11	_	-12	-8.0		V 20VI 10A B 10 IB
Output Return Loss	S22	_	-6.0	-4.5	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = -10 \text{ dBm}$
Pulse Amplitude Droop	D	_	0.15	_]	V _{DD} = 28 V, I _{DQ} = 1.0 A

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

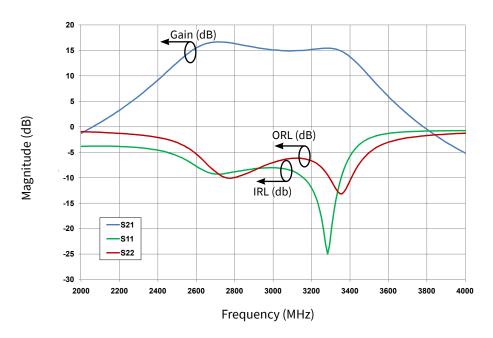
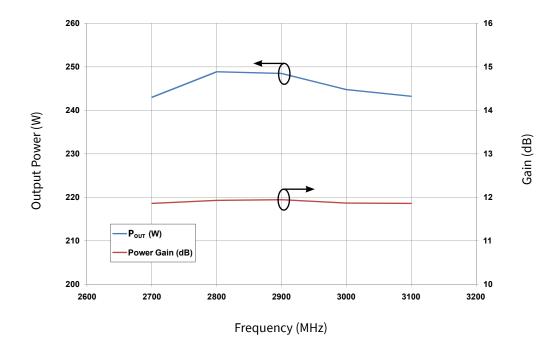
 $^{^3}$ Measured for the CGH31240F at P_{DISS} = 280 W. Pulse Width = 300 μs , Duty Cycle = 20%

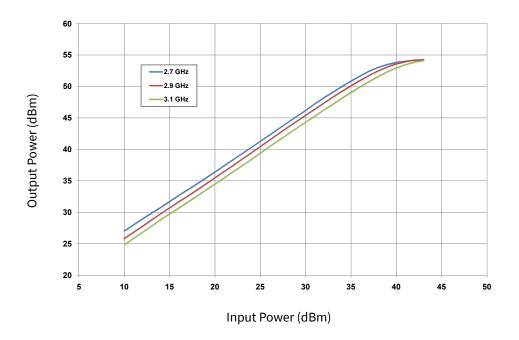
 $^{^{\}scriptscriptstyle 1}$ Measured on wafer prior to packaging

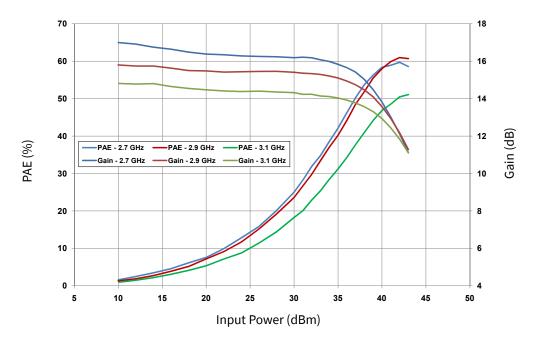
 $^{^{\}mathrm{2}}$ Scaled from PCM data

³ Measured in CGH31240F-AMP. Pulse Width = 300μs, Duty Cycle = 20%.

Typical Performance


Figure 1. Gain and Return Losses vs Frequency of the CGH31240F Measured in CGH31240F-AMP Amplifier Circuit V_{DS} = 28 V, I_{DS} = 1 A


Figure 2. Typical Pulsed Output Power and Power Gain vs Frequency of the CGH31240F Measured in CGH31240F-AMP Amplifier Circuit $V_{DS} = 28 \text{ V}, I_{DS} = 1 \text{ A}, P_{IN} = 42 \text{ dBm}, Pulse Width = 300 \mu s, Duty Cycle = 20\%$

Typical Performance

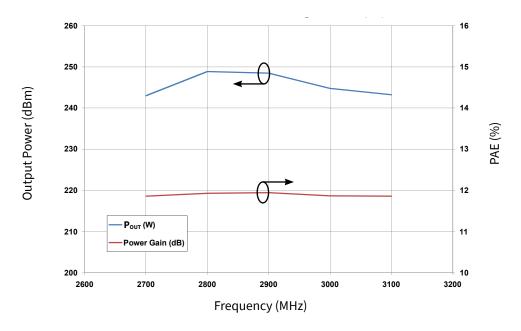
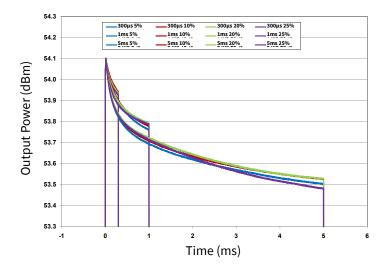

Figure 3. CGH31240F Output Power vs Input Power $V_{DS} = 28 \text{ V}$, $I_{DS} = 1 \text{ A}$, Pulse Width = 300 μ s, Duty Cycle = 20%

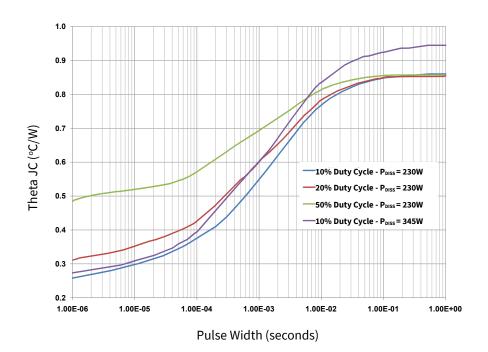
Figure 4. CGH31240F PAE & Gain vs Input Power $V_{DS} = 28 \text{ V}$, $I_{DS} = 1 \text{ A}$, Pulse Width = 300 μ s, Duty Cycle = 20%



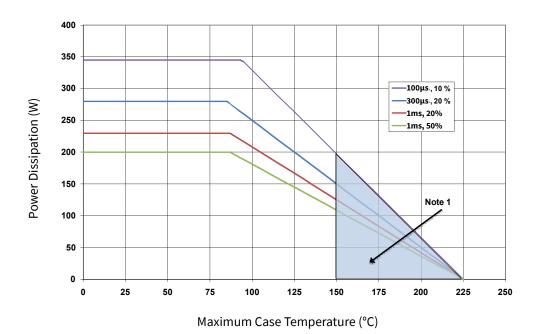
Typical Performance

Figure 5. Typical Pulsed Output Power and Power Added Efficiency vs Frequency of the CGH31240F Measured in CGH31240F-AMP Amplifier Circuit V_{DS} = 28 V, I_{DS} = 1 A, P_{IN} = 42 dBm, Pulse Width = 300 μ s, Duty Cycle = 20%

Typical Pulse Droop Performance

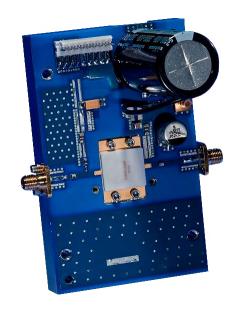

Pulse Width	Duty Cycle (%)	Droop (dB)
10μs	5-25	0.05
50μs	5-25	0.05
100µs	5-25	0.10
300µs	5-25	0.15
1ms	5-25	0.30
5ms	5-25	0.60

Electrostatic Discharge (ESD) Classifications

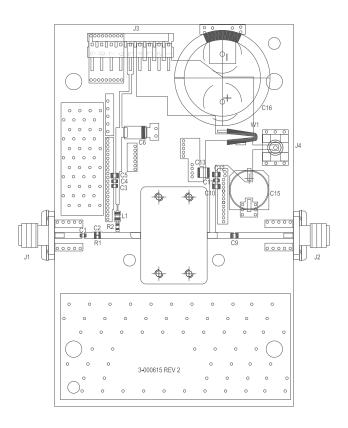

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

CGH31240F Pulse Transient Rth

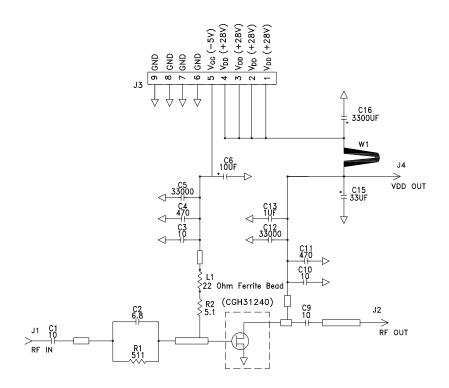
CGH31240F Transient Power Dissipation De-rating Curve


¹ Area exceeds Maximum Case Operating Temperature (See Page 2).

CGH31240F-AMP Demonstration Amplifier Circuit Bill of Materials

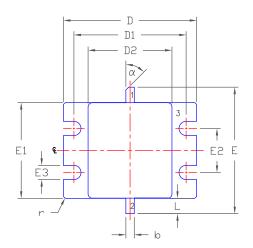

Designator	Description	Qty
R1	RES, 511 OHM, +/- 1%, 1/16W, 0603	1
R2	RES, 5.1, OHM, +/- 1%, 1/16W, 0603	1
C1, C3	CAP, 10.0pF, +/-5%, 250V, 0603, ATC600S	2
C2	CAP, 6.8pF, +/- 0.25pF, 250V, 0603, ATC600S	1
C4, C11	CAP, 470pF, +/-5%, 100V, 0603, X7R	2
C15	CAP, 33μF, 20%, G CASE	1
C5, C12	CAP, 33000pF, 0805, 100V, X7R	2
C13	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
C6	CAP, 10μF, 16V, TANTALUM	1
C9, C10	CAP, 10pF, +/- 1%, 250V, 0805	2
C16	CAP, 3300µF, +/-20%, 100V, ELECTROLYTIC	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER, RT>PLZ, 0.1CEN LK 9POS	1
J4	CONNECTOR, SMB, STRAIGHT, JACK, SMD	1
W1	CABLE, 18 AWG, 4.2	1
L1	FERRITE, 22 OHM, 0805, BLM21PG220SN1	1
-	PCB, RO4350, 2.5 X 4.0 X 0.030	1
Q1	CGH31240F	1

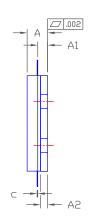
CGH31240F-AMP Demonstration Amplifier Circuit



CGH31240F-AMP Demonstration Amplifier Circuit Outline

CGH31240F-AMP Demonstration Amplifier Circuit Schematic


Typical Package S-Parameters for CGH31240F (Small Signal, V_{DS} = 28 V, I_{DQ} = 1000 mA, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.970	170.7	1.73	35.7	0.003	-50.20	0.880	172.0
600 MHz	0.972	167.9	1.42	26.4	0.003	-58.75	0.891	169.5
700 MHz	0.973	165.2	1.21	17.6	0.003	-66.68	0.899	166.8
800 MHz	0.974	162.4	1.07	9.4	0.003	-74.07	0.906	163.9
900 MHz	0.975	159.5	0.96	1.6	0.003	-81.04	0.911	160.9
1.0 GHz	0.975	156.5	0.90	-6.0	0.003	-87.75	0.914	157.6
1.1 GHz	0.974	153.3	0.85	-13.4	0.004	-94.31	0.915	154.2
1.2 GHz	0.974	150.0	0.83	-20.8	0.004	-100.84	0.916	150.6
1.3 GHz	0.973	146.4	0.83	-28.3	0.004	-107.45	0.915	146.8
1.4 GHz	0.971	142.6	0.85	-35.9	0.004	-114.23	0.912	142.6
1.5 GHz	0.969	138.5	0.89	-43.9	0.005	-121.30	0.908	138.0
1.6 GHz	0.966	133.9	0.96	-52.3	0.006	-128.79	0.902	133.0
1.7 GHz	0.963	128.8	1.05	-61.3	0.007	-136.83	0.893	127.4
1.8 GHz	0.958	123.1	1.18	-71.0	0.008	-145.62	0.883	121.1
1.9 GHz	0.951	116.4	1.37	-81.8	0.009	-155.39	0.869	113.7
2.0 GHz	0.940	108.4	1.62	-93.8	0.012	-166.47	0.851	105.1
2.1 GHz	0.924	98.7	1.98	-107.7	0.015	-179.29	0.828	94.6
2.2 GHz	0.899	86.5	2.49	-123.9	0.019	165.52	0.796	81.7
2.3 GHz	0.857	70.5	3.19	-143.3	0.026	147.11	0.753	65.3
2.4 GHz	0.786	48.8	4.11	-167.0	0.034	124.49	0.692	44.1
2.5 GHz	0.677	19.2	5.14	164.4	0.044	97.04	0.607	17.1
2.6 GHz	0.544	-19.8	5.99	132.0	0.053	65.78	0.507	-14.9
2.7 GHz	0.448	-66.0	6.37	98.8	0.058	33.68	0.424	-47.8
2.8 GHz	0.422	-109.5	6.35	67.2	0.060	3.29	0.380	-76.4
2.9 GHz	0.427	-143.8	6.19	37.7	0.060	-25.00	0.369	-99.2
3.0 GHz	0.421	-171.5	6.08	9.2	0.060	-52.23	0.370	-117.6
3.2 GHz	0.243	120.6	6.20	-53.0	0.064	-111.80	0.279	-141.6
3.4 GHz	0.472	-78.8	4.79	-135.3	0.051	168.82	0.437	-99.1
3.6 GHz	0.821	-139.7	2.06	160.3	0.023	107.35	0.777	-131.3
3.8 GHz	0.897	-168.1	0.91	121.3	0.010	71.59	0.877	-153.9
4.0 GHz	0.919	173.9	0.46	92.8	0.005	46.59	0.915	-169.9
4.2 GHz	0.925	159.9	0.26	69.5	0.003	26.99	0.931	177.2
4.4 GHz	0.925	147.6	0.16	49.0	0.002	10.54	0.937	165.9
4.6 GHz	0.920	136.2	0.10	30.7	0.001	-3.53	0.937	155.2
4.8 GHz	0.913	124.8	0.07	13.6	0.001	-16.16	0.932	144.6
5.0 GHz	0.903	113.2	0.05	-2.9	0.001	-27.84	0.923	133.8
5.2 GHz	0.891	101.1	0.04	-19.3	0.001	-39.20	0.911	122.4
5.4 GHz	0.877	88.0	0.03	-35.8	0.000	-50.53	0.895	109.8
5.6 GHz	0.860	73.9	0.03	-52.2	0.000	-61.60	0.875	95.9
5.8 GHz	0.842	58.5	0.02	-68.3	0.000	-72.36	0.852	80.2
6.0 GHz	0.824	41.6	0.02	-83.9	0.000	-82.61	0.828	62.1

To download the s-parameters in s2p format, go to the CGH31240F Product Page.

Product Dimensions CGH31240F (Package Type — 440201)

PIN 1. GATE 2. DRAIN 3. SOURCE

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M $-\,$ 1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INC	HES	MILLIM	NOTES	
DIM	MIN	MAX	MIN	MAX	
Α	0.128	0.148	3.25	3.76	
A1	0.057	0.067	1.45	1.70	
A2	0.035	0.045	0.89	1.14	
b	0.055	0.065	1.40	1.65	2x
С	0.004	0.007	0.08	0.15	
D	0.948	0.958	24.08	24.33	
D1	0.798	0.808	20.27	20.52	
D2	0.595	0.605	15.11	15.37	
Ε	0.880	0.930	22.35	23.62	
E1	0.680	0.694	17.27	17.63	
E2	0.310	0.320	7.87	8.13	
E3	0.097	0.107	2.46	2.72	4x
L	0.095	0.125	2.41	3.18	2×
r	0.02	TYP	0.51	4x	
α	45*	REF	45°		

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH31240F	GaN HEMT	Each	CGH312A0F COSB38S
CGH31240F-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.