

CGH27060F

60 W Peak, 28 V, GaN HEMT for Linear Communications from VHF to 3 GHz

Description

The CGH27060F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH27060F ideal for VHF, Comms, 3G, 4G, LTE, 2.3-2.9GHz WiMAX and BWA amplifier applications. The unmatched transistor is supplied in a ceramic/metal flange package.

Package Types: 440193 PN: CGH27060F

Typical Performance Over 2.3-2.7 GHz ($T_c = 25^{\circ}$ C) of Demonstration Amplifier

Parameter	2.3 GHz	2.4 GHz	2.5 GHz	2.6 GHz	2.7 GHz	Units
Small Signal Gain	15.1	14.7	14.3	14.3	14.5	dB
EVM @ 39 dBm	2.35	2.16	2.01	2.13	2.82	%
Drain Efficiency @ 39 dBm	28.3	27.6	27.3	26.7	26.3	%
Input Return Loss	10.0	7.3	6.0	7.0	10.3	dB

Measured in the CGH27060F-AMP amplifier circuit, under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, PAR = 9.8 dB @ 0.01% Probability on CCDF

Features

- VHF 3.0 GHz Operation
- 14 dB Small Signal Gain
- $8.0 \text{ W P}_{AVE} \text{ at} < 2.0\% \text{ EVM}$
- 27% Drain Efficiency at 8 W Average Power
- WiMAX Fixed Access 802.16-2004 OFDM
- WiMAX Mobile Access 802.16e OFDMA

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions	
Drain-Source Voltage	V _{DSS}	120	V	25°C	
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C	
Storage Temperature	T _{STG}	-65, +150	°C		
Operating Junction Temperature	TJ	225			
Maximum Forward Gate Current	I _{GMAX}	15	mA	3596	
Maximum Drain Current ¹	I _{DMAX}	6	Α	¹ 25°C	
Soldering Temperature ²	Ts	245	°C		
Screw Torque	τ	40	in-oz		
Thermal Resistance, Junction to Case ³	R _{θJC}	2.8	°C/W	85°C	
Case Operating Temperature ³	T _C	-40, +150	°C		

Notes:

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹							
Gate Threshold Voltage	V _{GS(th)}	-3.5	-3.0	-2.0	V	V _{DS} = 10 V, I _D = 14.4 mA	
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V _{DC}	$V_{DS} = 28 \text{ V}, I_{DQ} = 300 \text{ mA}$	
Saturated Drain Current	I _{DS}	11.6	14.0	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2 \text{ V}$	
Drain-Source Breakdown Voltage	V_{BR}	84	_	-	V _{DC}	$V_{GS} = -8 \text{ V}, I_D = 14.4 \text{ mA}$	
RF Characteristics ^{2,3} (T _c = 25°C, F ₀ =	RF Characteristics ^{2,3} (T _c = 25°C, F ₀ = 2.5 GHz unless otherwise noted)						
Small Signal Gain	Gss	11.0	13.0	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 300 \text{ mA}$	
Drain Efficiency⁴	η	21	24	_	%	V - 20 V I - 200 mA D - 0 W	
Error Vector Magnitude	EVM	-	2.0	-		$V_{DD} = 28 \text{ V}, I_{DQ} = 300 \text{ mA}, P_{AVE} = 8 \text{ W}$	
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 300 \text{ mA}$, $P_{AVE} = 8 \text{ W}$	
Dynamic Characteristics	Dynamic Characteristics						
Input Capacitance	C _{GS}	_	19.0	_			
Output Capacitance	C _{DS}	-	5.9	_	pF	$V_{DS} = 28 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$	
Feedback Capacitance	$C_{\sf GD}$	_	0.8	_			

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 $^{^{3}}$ Measured for the CGH27060F at P_{DISS} = 56 W.

¹ Measured on wafer prior to packaging.

² Measured in the CGH27060F-AMP test fixture

³ Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, PAR = 9.8 dB @ 0.01% Probability on CCDF

 $^{^{4}}$ Drain Efficiency = P_{OUT} / P_{DC}

Typical WiMAX Performance

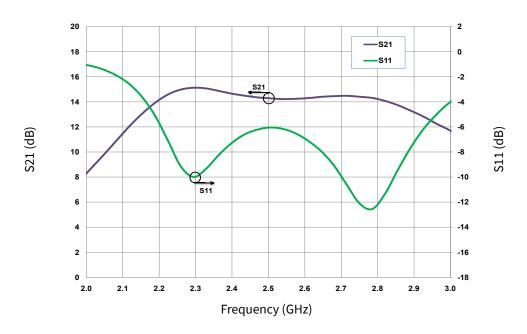
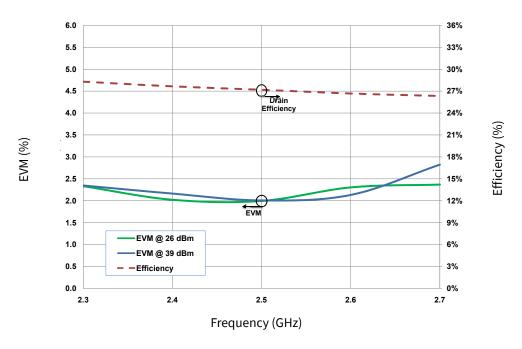



Figure 1. Gain and Return Loss vs Frequency measured in Broadband Amplifier Circuit CGH27060F-AMP $V_{DD} = 28 \text{ V}, I_{DQ} = 300 \text{ mA}$

Figure 2. Typical EVM at 24 dBm and 39 dBm vs Frequency measured in Broadband Amplifier Circuit CGH27060F-AMP

Note:

¹ Under 802.16-2004 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Visit www.macom.com for additional data sheets and product information.

Typical WiMAX Performance

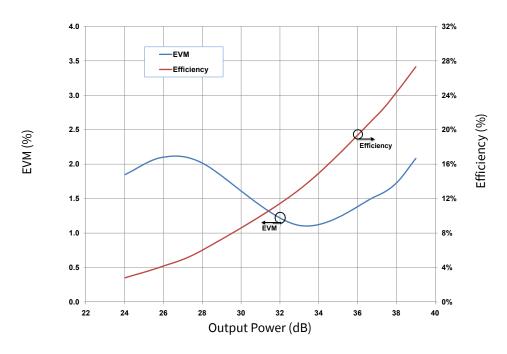


Figure 3. Drain Efficiency and EVM vs Output Power measured in CGH27060F-AMP $V_{DD} = 28 \text{ V}, I_{DQ} = 300 \text{ mA}, 802.16-2004 \text{ OFDM}, PAR = 9.8 \text{ dB}$

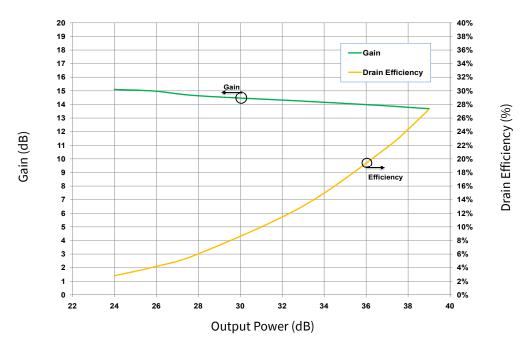


Figure 4. Typical Gain and Efficiency vs Output Power measured in CGH27060F-AMP $V_{DD} = 28 \text{ V}, I_{DQ} = 300 \text{ mA}, 802.16-2004 \text{ OFDM}, PAR = 9.8 \text{ dB}$

¹ Under 802.16-2004 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3.

Typical Performance

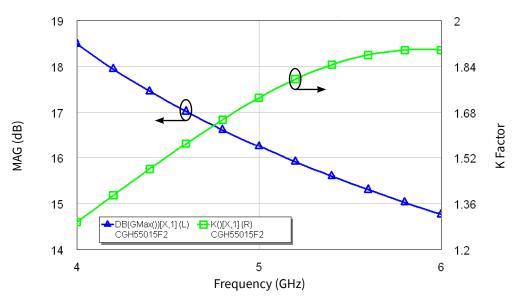
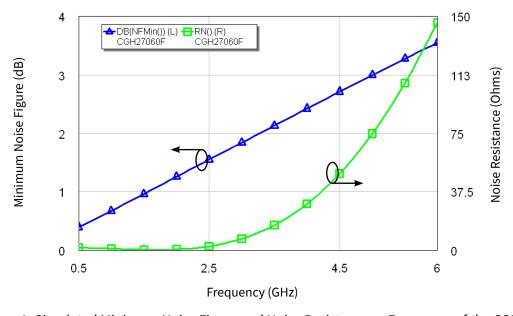
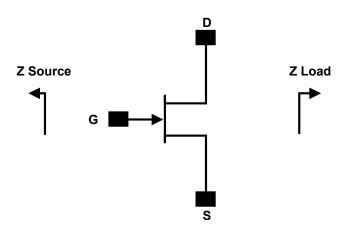


Figure 5. Simulated Maximum Available Gain and K Factor of the CGH27060F $V_{DD} = 28 \text{ V}, I_{DO} = 300 \text{ mA}$

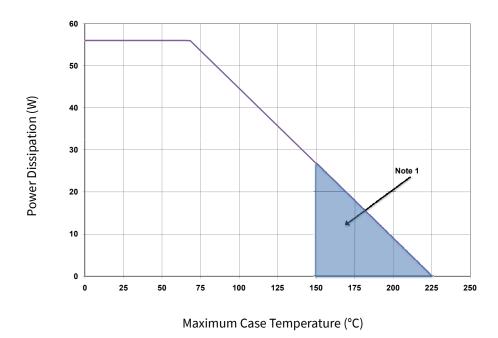
Typical Noise Performance




Figure 6. Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH27060 $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C


Source and Load Impedances

Frequency	Z Source	Z Lead
500	3.34 + j4.56	10.8 – j8.24
1000	2.07 – j0.05	6.18 – j4.17
2000	1.3 - j3.37	4.65 – j0.05
3000	1.64 – j8.15	4.75 – j3.4
4000	1.9 – j10.8	4.56 – j7.9

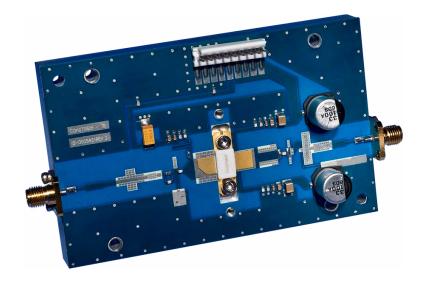
Notes:

CGH27060F Power Dissipation De-rating Curve

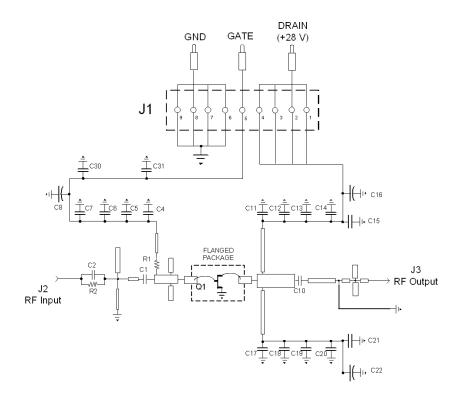
Note: Area exceeds Maximum Case Operating Temperature (See Page 2)

 $^{^1\,\}mbox{V}_{\mbox{\scriptsize DD}}$ = 28V, $\mbox{I}_{\mbox{\scriptsize DQ}}$ = 300mA in the 440193 package

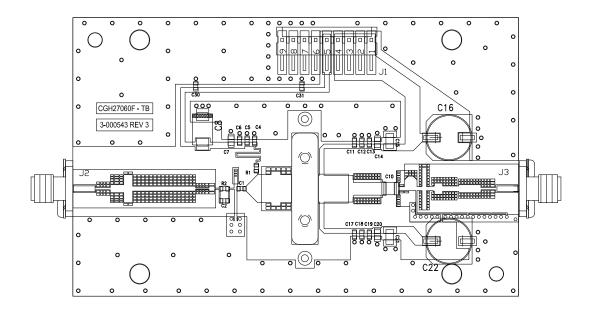
² Optimized for P_{SAT} and PAE


³ When using this device at low frequency, series resistors should be used to maintain amplifier stability

CGH27060F-AMP Demonstration Amplifier Circuit Bill of Materials

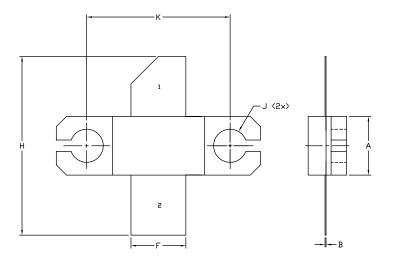

Designator	Description	Qty
R1	RES, 1/16W, 0603, 1%, 5.1 OHMS	1
R2	RES, 1/16W, 0603, 1%, 100 OHMS	1
C6, C13, C19	CAP, 470pF, 10%,100V, 0603	3
C16, C22	CAP, 33μF, 20%, G CASE	1
C15, C21	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
C8	CAP 10μF 16V TANTALUM	1
C10	CAP, 8.2pF, +/-5%, 100B	1
C1	CAP, 0.9pF, +/-0.05pF, 0603	1
C2	CAP, 2.2pF, +/-0.1pF, 0603	1
C10, C11, C17	CAP, 10.0pF,+/-5%, 0603	3
C5, C12, C18, C30, C31	CAP, 82pF, +/-5%, 0603	5
C7, C14, C20	CAP, 33000pF, 0805, 100V, X7R	3
J2, J3	CONN SMA STR PANEL JACK RECP	1
J1	HEADER RT>PLZ .1CEN LK 9POS	1
-	PCB, RO4350B, Er = 3.48, h = 20 mil	1
-	CGH27060F	1

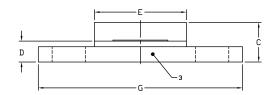
CGH27060F-AMP Demonstration Amplifier Circuit



CGH27060F-AMP Demonstration Amplifier Circuit Schematic

CGH27060F-AMP Demonstration Amplifier Circuit Outline


Typical Package S-Parameters for CGH27060F (Small Signal, V_{DS} = 28 V, I_{DQ} = 300 mA, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.935	-171.10	7.31	80.30	0.013	-4.81	0.629	-171.50
600 MHz	0.935	-173.48	6.08	76.43	0.013	-7.68	0.635	-171.81
700 MHz	0.936	-175.34	5.20	72.85	0.013	-10.25	0.642	-171.96
800 MHz	0.937	-176.87	4.54	69.47	0.013	-12.62	0.649	-172.04
900 MHz	0.937	-178.19	4.03	66.24	0.013	-14.82	0.656	-172.11
1.0 GHz	0.938	-179.38	3.62	63.13	0.013	-16.89	0.664	-172.18
1.1 GHz	0.939	179.54	3.28	60.12	0.013	-18.84	0.672	-172.28
1.2 GHz	0.939	178.52	3.00	57.20	0.012	-20.69	0.680	-172.42
1.3 GHz	0.940	177.55	2.77	54.36	0.012	-22.44	0.688	-172.60
1.4 GHz	0.941	176.60	2.57	51.59	0.012	-24.10	0.695	-172.83
1.5 GHz	0.942	175.68	2.39	48.89	0.012	-25.67	0.703	-173.11
1.6 GHz	0.942	174.77	2.24	46.24	0.012	-27.15	0.710	-173.42
1.7 GHz	0.943	173.87	2.11	43.66	0.012	-28.56	0.718	-173.78
1.8 GHz	0.943	172.96	2.00	41.12	0.011	-29.88	0.724	-174.18
1.9 GHz	0.944	172.04	1.90	38.63	0.011	-31.12	0.731	-174.61
2.0 GHz	0.944	171.11	1.81	36.19	0.011	-32.29	0.737	-175.07
2.1 GHz	0.944	170.16	1.73	33.78	0.011	-33.39	0.743	-175.57
2.2 GHz	0.944	169.19	1.67	31.41	0.011	-34.42	0.748	-176.10
2.3 GHz	0.945	168.19	1.61	29.06	0.011	-35.38	0.753	-176.65
2.4 GHz	0.944	167.16	1.55	26.74	0.010	-36.28	0.758	-177.23
2.5 GHz	0.944	166.10	1.51	24.43	0.010	-37.11	0.762	-177.83
2.6 GHz	0.944	165.00	1.47	22.14	0.010	-37.88	0.765	-178.45
2.7 GHz	0.944	163.85	1.43	19.85	0.010	-38.60	0.769	-179.10
2.8 GHz	0.943	162.64	1.41	17.56	0.010	-39.27	0.771	-179.77
2.9 GHz	0.942	161.38	1.38	15.27	0.010	-39.90	0.774	179.54
3.0 GHz	0.941	160.06	1.36	12.96	0.010	-40.48	0.776	178.82
3.2 GHz	0.939	157.18	1.34	8.27	0.010	-41.54	0.778	177.32
3.4 GHz	0.935	153.93	1.33	3.43	0.010	-42.52	0.779	175.73
3.6 GHz	0.931	150.21	1.34	-1.65	0.010	-43.50	0.778	174.01
3.8 GHz	0.925	145.88	1.37	-7.06	0.010	-44.60	0.774	172.17
4.0 GHz	0.916	140.74	1.43	-12.95	0.011	-45.95	0.769	170.17
4.2 GHz	0.906	134.55	1.50	-19.47	0.011	-47.77	0.760	167.98
4.4 GHz	0.891	126.90	1.61	-26.85	0.012	-50.32	0.749	165.56
4.6 GHz	0.872	117.26	1.75	-35.39	0.013	-53.96	0.733	162.84
4.8 GHz	0.848	104.85	1.92	-45.48	0.014	-59.15	0.713	159.74
5.0 GHz	0.817	88.57	2.14	-57.60	0.016	-66.44	0.688	156.11
5.2 GHz	0.784	67.16	2.37	-72.25	0.018	-76.37	0.654	151.74
5.4 GHz	0.759	39.85	2.58	-89.71	0.020	-89.30	0.609	146.35
5.6 GHz	0.757	8.00	2.70	-109.65	0.021	-104.92	0.546	139.55
5.8 GHz	0.788	-24.14	2.67	-130.98	0.022	-122.14	0.460	130.98
6.0 GHz	0.836	-52.18	2.49	-152.33	0.021	-139.60	0.347	119.94

To download the s-parameters in s2p format, go to the CGH27060F Product Page.

Product Dimensions CGH27060F (Package Type — 440193)

NOTES

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	ETERS			
DIM	MIN	MAX	MIN	MAX			
Α	0.225	0.235	5.72	5.97			
В	0.004	0.006	0.10	0.15			
С	0.145	0.165	3.68	4.19			
D	0.077	0.087	1.96	2.21			
E	0.355	0.365	9.02	9.27			
F	0.210	0.220	5.33	5.59			
G	0.795	0.805	20.19	20.45			
Н	0.670	0.730	17.02	18.54			
J	ø .130		3.3	50			
k	0.562		14.	28			

PIN 1. GATE PIN 2. DRAIN

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH27060F	GaN HEMT	Each	CGH27080F
CGH27060F-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.