

CGH27030S 30 W, DC - 6.0 GHz, 28 V, GaN HEMT

Description

The CGH27030S is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH27030S ideal for LTE, 4G Telecom and BWA amplifier applications. The CGH27030S operates from a 28 volt rail. The transistor is available in a 3mm x 4mm, surface mount, dual-flat-no-lead (DFN) package.

Package Type: 3x4 DFN PN: CGH27030S

Typical Performance 1.8-2.7 GHz (T_c = 25°C), 28 V

Parameter	1.8 GHz ¹	2.0 GHz ¹	2.2 GHz ¹	2.3 GHz ²	2.5 GHz ²	2.7 GHz ²	Units
Small Signal Gain	20.0	20.4	19.5	21.1	20.6	20.0	dB
Adjacent Channel Power @ P _{AVE} = 5 W	-39.5	-42.1	-39.1	-32.0	-36.4	-33.6	dBc
Drain Efficiency @ P _{AVE} = 5 W	31.8	32.8	33.8	37.8	36.2	35.0	%
Input Return Loss	-4.2	-6.4	-7.7	-7.3	-7.9	-7.2	dB

Notes:

¹ Measured in the CGH27030S-AMP1 amplifier circuit, under 7.5 dB PAR single carrier WCDMA signal test model 1 with 64 DPCH

² Measured in the CGH27030S-AMP2 amplifier circuit, under 7.5 dB PAR single carrier WCDMA signal test model 1 with 64 DPCH

Features for 28 V in CGH27030S-AMP1

- 1.8 2.2 GHz Operation
- 30 W Typical Output Power
- 18 dB Gain at 5 W P_{AVE}
- -39 dBc ACLR at 5 W PAVE
- 33% efficiency at 5 W P_{AVE}
- High degree of APD and DPD correction can be applied

Features for 28 V in CGH27030S-AMP2

- 2.3 2.7 GHz Operation
- 30 W Typical Output Power
- 18.5 dB Gain at 5 W PAVE
- -39 dBc ACLR at 5 W PAVE
- 36% efficiency at 5 W PAVE
- High degree of APD and DPD correction can be applied

Large Signal Models Available for ADS and MWO

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	V	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25 C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	7.2	mA	- 25°C
Maximum Drain Current ¹	I _{DMAX}	3.0	А	- 25°C
Soldering Temperature ²	Ts	245	°C	
Case Operating Temperature ³	T _c	-40, +150		
Thermal Resistance, Junction to Case ^{4,5}	R _{θJC}	3.65	°C/W	85°C

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 3 Tc = Case temperature for the device. It refers to the temperature at the ground tab underneath the package. The PCB will add additional thermal resistance

 4 Simulated for the CGH27030S at $\rm P_{\rm DISS}$ = 21.6 W

 5 The R_{TH} for the demonstration amplifier, CGH27030S-AMP1, with 33 x 0.011 via holes designed on a 20 mil thick Rogers 4350 PCB, is 3.51°C. The total R_{TH} from the heat sink to the junction is 3.62°C + 3.51°C = 7.13 °C/W

Electrical Characteristics (T_c = 25°C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹	, ,		·	·	·	·
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3		$V_{DS} = 10 \text{ V}, I_{D} = 7.2 \text{ mA}$
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	-	VDC	V _{DS} = 28 V, I _D = 0.20 mA
Saturated Drain Current	I _{DS}	5.0	7.0	-	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{(BR)DSS}	84	_	-	V _{DC}	$V_{GS} = -8 V$, $I_{D} = 7.2 mA$
RF Characteristics ³ (T _c = 25°C, F₀ = 2.65 GHz unless otherwise noted)						
Gain	G	_	19.1	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 0.20 \text{ A}, P_{IN} = 10 \text{ dBm}$
Output Power	Pout	_	44.9	-	dBm	
Drain Efficiency ³	η	_	72	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 0.20 \text{ A}, P_{IN} = 30 \text{ dBm}$
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}, I_{DQ} = 0.20 \text{ A}, P_{IN} = 30 \text{ dBm}$
Dynamic Characteristics						
Input Capacitance ⁴	C _{GS}	_	8.6	-		
Output Capacitance ⁴	C _{DS}	_	2.0	_	pF	$V_{DS} = 28 V$, $V_{GS} = -8 V$, $f = 1 MHz$
Feedback Capacitance	C _{GD}	_	0.4	_	1	

Notes:

¹ Measured on wafer prior to packaging

² Measured in the production test fixture. This fixture is designed for high volume test at 2.65 GHz

³ Un-modulated Pulsed Signal, 100µs, 10% duty cycle

⁴ Includes package and internal matching components

2

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance in CGH27030S-AMP1

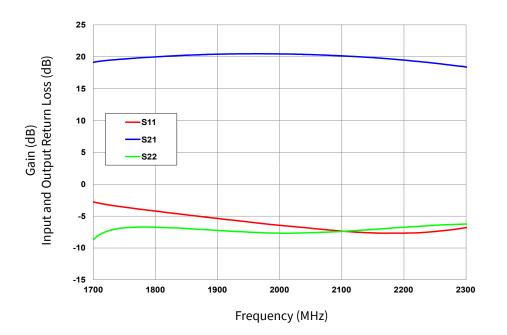
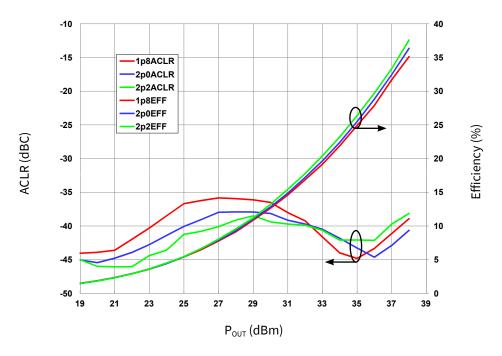
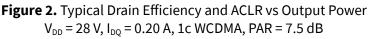




Figure 1. Small Signal Gain and Return Losses vs Frequency V_{DD} = 28 V, I_{DQ} = 0.20 A

3 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance in CGH27030S-AMP1

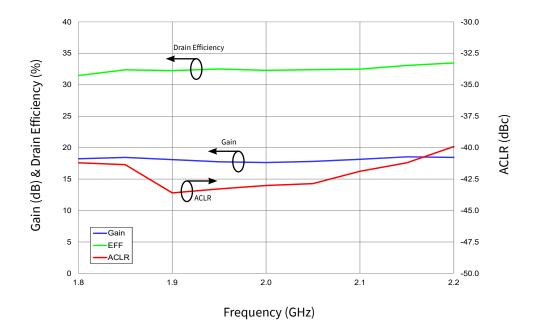
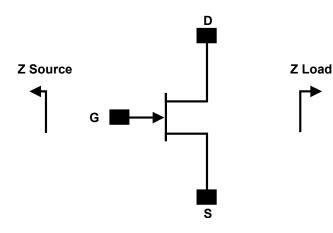



Figure 3. Typical Gain, Drain Efficiency and ACLR vs Frequency $V_{DD} = 28 \text{ V}$, $I_{DQ} = 0.20 \text{ A}$, $P_{AVE} = 5 \text{ W}$, 1c WCDMA, PAR = 7.5 dB

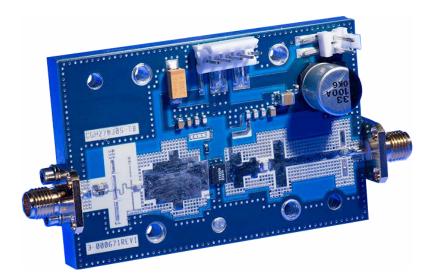
Source and Load Impedances for Application Circuit CGH27030S-AMP1

Frequency	Z Source	Z Load
1800	3.5 – j1.6	11 + j0.2
2000	3.6 – j0.6	10.5 – j1.8
2200	3.3 – j0.1	11 + j3.3

Notes:

 1 V_{\text{DD}} = 28 V, I $_{\text{DO}}$ = 0.20 A in the DFN package

² Impedances are extracted from the CGH27030S-AMP1 application circuit and are not source and load pull data derived from the transistor


⁴ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

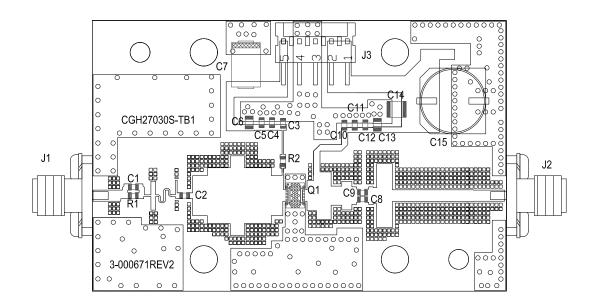
CGH27030S-AMP1 Application Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 1/16 W, 0603, 1%, 100 OHMS	1
R2	RES, 1/16 W, 0603, 1%, 5.1 OHMS	1
C1	CAP, 6.8pF, ±0.25pF, 0603, ATC	1
C2	CAP, 2.4pF, ±0.01pF, 0603, ATC	1
C3, C8, C9, C10	CAP, 10.0pF, ±0.5pF, 0603, ATC	3
C12	CAP, 100.0pF, 5%, 0603, ATC	1
C5	CAP, 470pF, 5%, 100 V, 0603	1
C6, C13	CAP, 33000pF, 0805, 10%, 100 V, X7R	2
C14	CAP, 1.0μF, 100 V, 10%, X7R, 1210	1
C7	CAP, 10µF, 16 V, TANTALUM	1
C15	CAP, 33µF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	2
Q1	CGH27030S, QFN	1

CGH27030S-AMP1 Application Circuit, 28 V, 1.8 - 2.2 GHz



5 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support


6

CGH27030S-AMP1 Application Circuit Schematic, 28 V, 1.8 - 2.2 GHz

CGH27030S-AMP1 Application Circuit, 28 V, 1.8 - 2.2 GHz

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 4.6, 2022-11-3

CGH27030S

Typical Performance in Application Circuit CGH27030S-AMP2

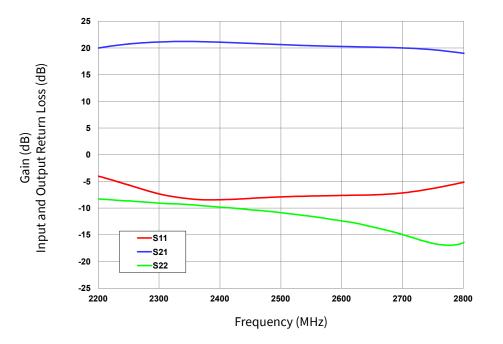
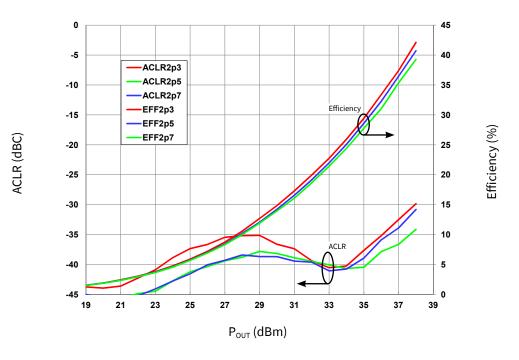
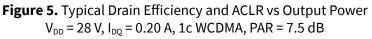




Figure 4. Small Signal Gain and Return Losses vs Frequency V_{DD} = 28 V, I_{DQ} = 0.20 A

⁷ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

CGH27030S

Typical Performance in Application Circuit CGH27030S-AMP2

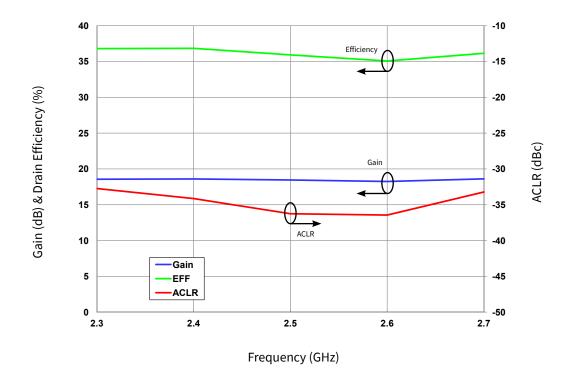
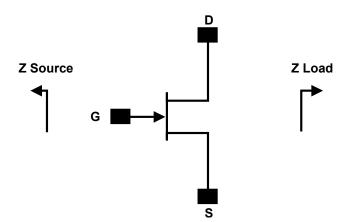


Figure 6. Typical Gain, Drain Efficiency and ACLR vs Frequency $V_{DD} = 28 \text{ V}, I_{DQ} = 0.20 \text{ A}, P_{AVE} = 5 \text{ W}, 1c \text{ WCDMA}, PAR = 7.5 \text{ dB}$

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1B	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Moisture Sensitivity Level (MSL) Classification


Parameter	Symbol	Level	Test Methodology
Moisture Sensitivity Level	MSL	3 (168 hours)	IPC/JEDEC J-STD-20

8 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 4.6, 2022-11-3 For further information and support please visit:

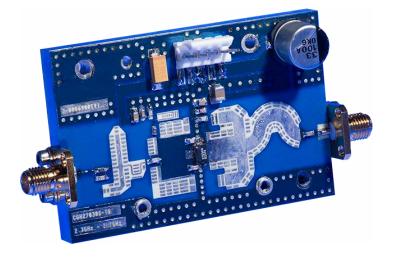
Source and Load Impedances for Application Circuit CGH27030S-AMP2

Frequency	Z Source	Z Lead
2300	1.7 – j0.5	7.7 + j7.7
2500	2.2 – j0.2	8.0 + j6.8
2700	1.5 – j0.1	6.6 + j6.3

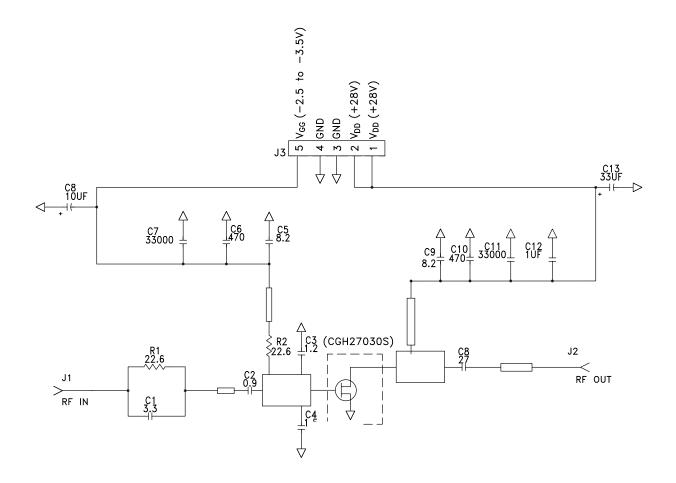
Notes:

 1 V_{DD} = 28 V, I_{DO} = 0.20 A in the DFN package

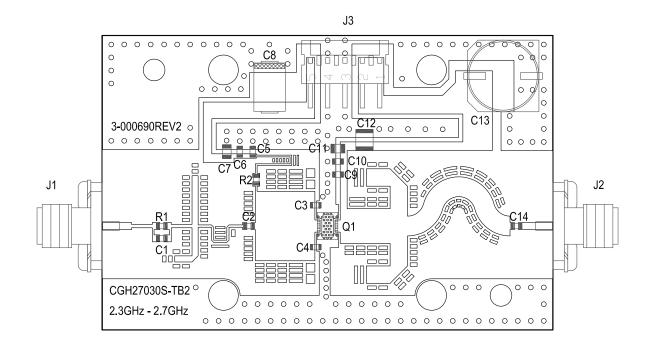
² Impedances are extracted from the CGH27030S-AMP2 application circuit and are not source and load pull data derived from the transistor


CGH27030S-AMP1 Application Circuit Bill of Materials

Designator	Description	Qty
R1, R2	RES, 22.6, OHM, +/-1%, 1/16W, 0603	2
C1	CAP, 3.3pF, ±0.1pF, 0603, ATC	1
C2	CAP, 0.9pF, ±0.1pF, 0603, ATC	1
C3	CAP, 1.2pF, ±0.1pF, 0603, ATC	1
C4	CAP, 1.5pF, ±0.1pF, 0603, ATC	1
C5, C9	CAP, 8.2pF, ±0.25pF, 0603, ATC	2
C6, C10	CAP, 470pF, 5%, 100 V, 0603, X	2
C7, C11	CAP, 33000pF, 0805, 100 V, X7R	2
C12	CAP, 1.0μF, 100 V, 10%, X7R, 1210	1
C8	CAP, 10μF 16 V TANTALUM	1
C14	CAP, 27pF, ±5%, 0603, ATC	1
C13	CAP, 33µF, 20%, G CASE	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	1
Q1	CGH27030S, QFN	2


9 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

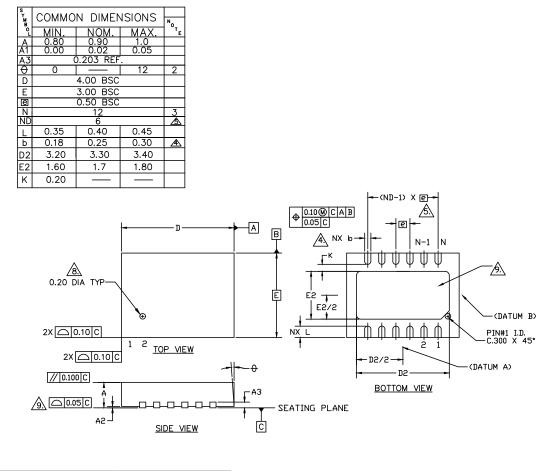
CGH27030S-AMP2 Application Circuit, 28 V, 2.3 - 2.7 GHz


CGH27030S-AMP2 Application Circuit Schematic, 28 V, 2.3 - 2.7 GHz

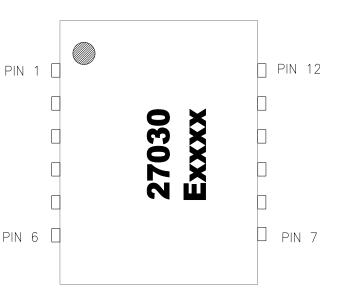
10 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u>

CGH27030S-AMP2 Application Circuit, 28 V, 2.3 - 2.7 GHz

 11
 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

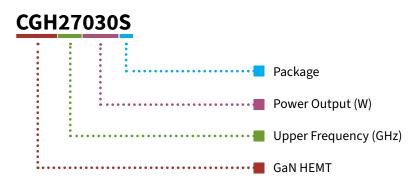

 For further information and support please visit:
 Rev. 4.6, 2022-11-3

 https://www.macom.com/support
 Rev. 4.6, 2022-11-3


CGH27030S

Product Dimensions CGH27030S (Package 3 x 4 DFN)

Pin	Input/Output
1	GND
2	RF IN
3	RF IN
4	RF IN
5	RF IN
6	GND
7	GND
8	RF OUT
9	RF OUT
10	RF OUT
11	RF OUT
12	GND



Note: Leadframe finish for 3x4 DFN package is Nickel/Palladium/Gold. Gold is the outer layer.

12 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit:

Part Number System

Table 1.

Parameter	Value	Units
Upper Frequency ¹	2.7	GHz
Power Output	30	W
Package	Surface Mount	-

Note:

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
E	4
F	5
G	6
н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

13 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u>

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH27030S	GaN HEMT	Each	228307
CGH27030S-AMP1	Test board without GaN HEMT	Each	
CGH27030S-AMP2	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY. EXPRESS OR IMPLIED. RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹⁵ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 4.6, 2022-11-3 For further information and support please visit: