

CGH27015

15 W, 28 V, GaN HEMT for Linear Communications ranging from VHF to 3 GHz

Description

The CGH27015 is a gallium nitride (GaN) high electron mobility transistor designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH27015 ideal for VHF, Comms, 3G, 4G, LTE, 2.3-2.9 GHz WiMAX and BWA amplifier applications. The unmatched transistor is available in both screw-down, flange and solder-down, pill packages.

Package Types: 440166 and 440196 PNs: CGH27015F and CGH27015P

Typical Performance Over 2.3-2.7 GHz ($T_c = 25^{\circ}C$)

Parameter	2.3 GHz	2.4 GHz	2.5 GHz	2.6 GHz	2.7 GHz	Unit
Small Signal Gain	16.9	16.0	15.1	14.6	14.3	dB
EVM at P _{AVE} = 33 dBm	1.69	1.51	1.50	1.66	1.93	%
Drain Efficiency at P _{AVE} = 33 dBm	27.1	27.8	28.4	28.0	28.0	dB

Features

- VHF 3.0 GHz Operation
- 15 W Peak Power Capability
- 14.5 dB Small Signal Gain
- 2 W P_{AVE} < 2.0% EVM
- 28% Efficiency at 2 W Average Power
- Designed for WiMAX Fixed Access 802.16-2004 OFDM Applications
- Designed for WiMAX Mobile Access 802.16e OFDMA Applications

RoHS compliant

Measured in the CGH27015F-AMP amplifier circuit, under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3, PAR = 9.8 dB @ 0.01 % Probability on CCDF.

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V_{DSS}	120	M	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25 C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	4.0	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	1.5	А	25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	$R_{ heta JC}$	8.0	°C/W	85°C
Case Operating Temperature ³	T _C	-40, +150	°C	

Notes:

Electrical Characteristics ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions		
DC Characteristics ¹	OC Characteristics ¹							
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	.,	V _{DS} = 10 V, I _D = 3.6 mA		
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	V _{Ds} = 28 V, I _{DQ} = 100 mA		
Saturated Drain Current	I _{DS}	2.9	3.5	_	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$		
Drain-Source Breakdown Voltage	V_{BR}	84	_	_	V _{DC}	$V_{GS} = -8 \text{ V, } I_D = 3.6 \text{ mA}$		
RF Characteristics ^{2, 3} (T _C = 25°	RF Characteristics ^{2,3} ($T_c = 25^{\circ}C$, $F_0 = 2.5$ GHz unless otherwise noted)							
Small Signal Gain	G _{SS}	13	15	_	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$		
Drain Efficiency ⁴	η	20	28	_	- %	V = 20 V L = 100 m A D = 22 d D m		
Error Vector Magnitude	EVM	_	2.0	_	9/0	$V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}, P_{AVE} = 33 \text{ dBm}$		
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, V _{DD} = 28 V, I _{DQ} = 100 mA, P _{AVE} = 33 dBm OFDM P _{AVE}		
Dynamic Characteristics	Dynamic Characteristics							
Input Capacitance	C _{GS}	_	4.5	_				
Output Capacitance	C _{DS}	_	1.3	_	pF	$V_{DS} = 28 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$		
Feedback Capacitance	C_{GD}	_	0.2	_				

Notes:

 $^{^{\}rm 1}$ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 $^{^3}$ Measured for the CGH27015F at P_{DISS} = 14 W

 $^{^{\}rm 1}\,{\rm Measured}$ in the CGH27015F-AMP test fixture

² Scaled from PCM data

³ Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, 5ms Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3

⁴ Drain Efficiency = P_{OUT}/P_{DC}

Typical Performance Data

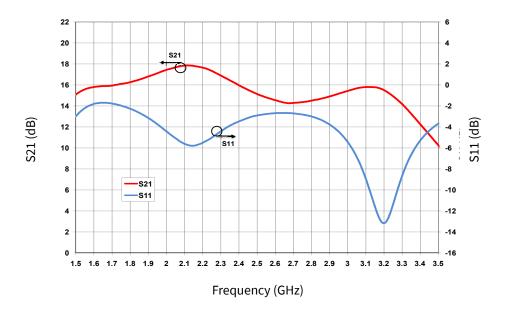


Figure 1. Performance of CGH27015 in Broadband Amplifier Circuit $V_{DD} = 28 \text{ V}, I_{DQ} = 100 \text{ mA}$

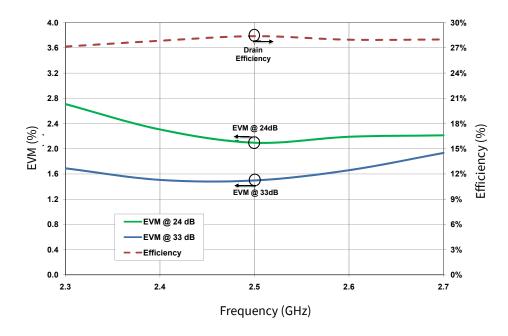
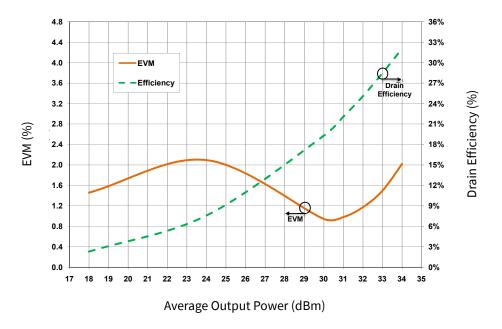



Figure 2. Typical EVM and Efficiency at 24 dBm and 33 dBm vs Frequency of CGH27015 in Broadband Amplifier Circuit

¹ Under 802.16 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3.

Typical Performance Data

Figure 3. Typical EVM and Efficiency of CGH27015 in Broadband Amplifier Circuit at 2.5 GHz f = 2.5 GHz, 802.16-2004 OFDM, P/A = 9.8 dB

Note:

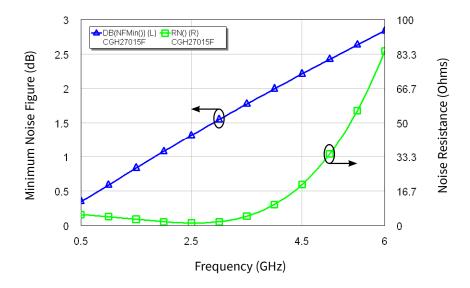
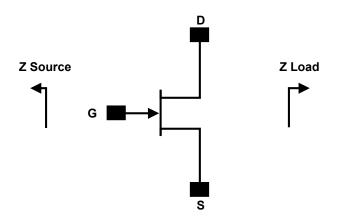

¹ Under 802.16-2004 OFDM, 3.5 MHz Channel BW, 1/4 Cyclic Prefix, 64 QAM Modulated Burst, Symbol Length of 59, Coding Type RS-CC, Coding Rate Type 2/3.

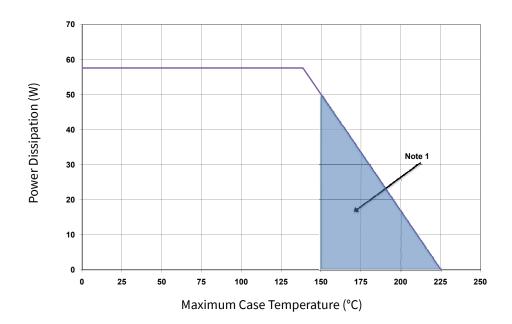
Figure 4. Simulated Maximum Available Gain and K Factor of the CGH27015F $V_{DD} = 28 \text{ V}, I_{DO} = 100 \text{ mA}$

Typical Noise Performance


Figure 5. Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH27015 $V_{DD} = 28 \text{ V}, I_{DO} = 100 \text{ mA}$

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C


Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
2300	17.8 - j1.5	16.8 - j1.7
2400	20.3 - j4.0	16.9 - j0.8
2500	20.6 - j7.9	17.2 + j0.2
2600	18.2 - j11.3	17.7 + j1.3
2700	14.6 - j12.6	19.1 + j2.4

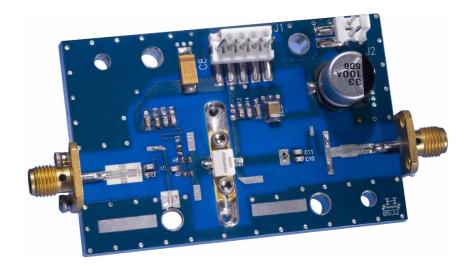
Notes:

CGH27015 Power Dissipation De-rating Curve

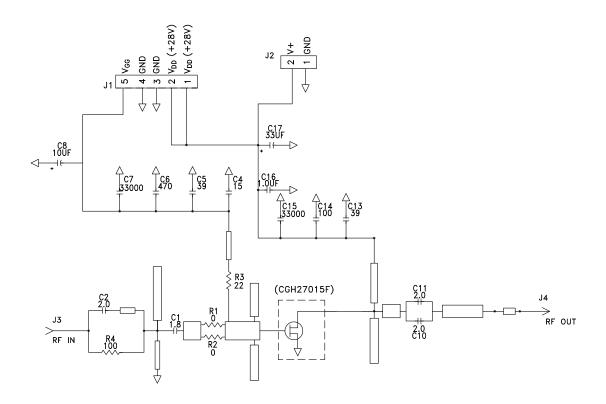
Note:

 $^{^{1}}$ V_{DD} = 28 V, I_{DQ} = 200mA. In the 440166 package

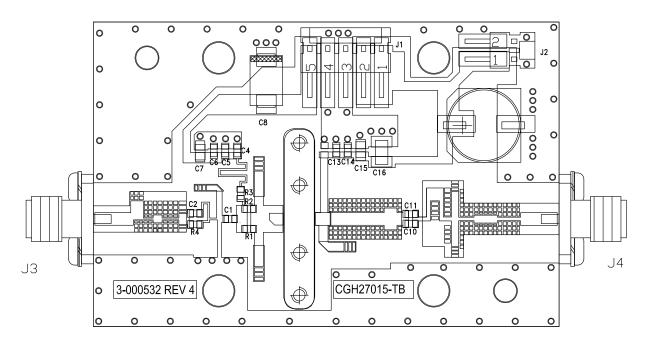
² Impedances are extracted from CGH27015-AMP demonstration circuit and are not source and load pull data derived from the transistor


¹ Area exceeds Maximum Case Operating Temperature (See Page 2)

CGH27015-AMP Demonstration Amplifier Circuit Bill of Materials

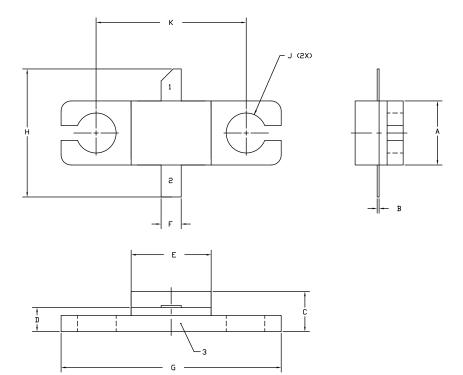

Designator	Description	Qty
R1, R2	RES, 1/16W, 0603, 1%, 0 OHMS	2
R4	RES, 1/16W, 0603, 1%, 100 OHMS	1
R3	RES, 1/16W, 0603, 1%, 22.6 OHMS	1
C6	CAP, 470pF, 5%, 100V, 0603	1
C17	CAP, 33μF, 20%, G CASE	1
C16	CAP, 1.0μF, 100V, 10%, X7R, 1210	1
C8	CAP, 10μF, 16V TANTALUM	1
C14	CAP, 100.0pF, +/-5%, 0603	1
C4	CAP, 15pF, +/-5%, 0603	1
C1	CAP, 1.8pF, +/-0.1pF, 0603	1
C2, C10, C11	CAP, 2.0pF, +/-0.1pF, 0603	3
C5, C13	CAP, 39pF, +/-5%, 0603	2
C7, C15	CAP, 33000pF, 0805, 100V, X7R	2
J3, J4	CONN SMA STR PANEL JACK RECP	1
J2	HEADER RT>PLZ.1CEN LK 2 POS	1
J1	HEADER RT>PLZ .1CEN LK 5POS	1
_	PCB, RO4350B, Er = 3.48, h = 20 mil	1
_	CGH27015F or CGH27015P	1

CGH27015-AMP Demonstration Amplifier Circuit



CGH27015-AMP Demonstration Amplifier Circuit Schematic

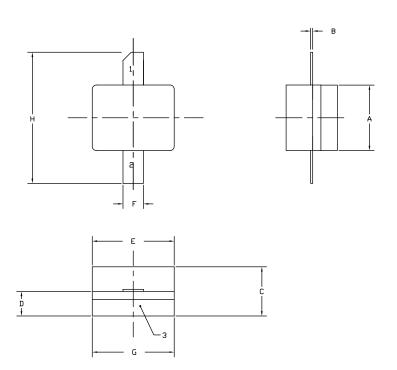
CGH27015-AMP Demonstration Amplifier Circuit Outline


Typical Package S-Parameters for CGH27015 (Small Signal, V_{DS} = 28 V, I_{DQ} = 100 mA, angle in degrees)

Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.909	-124.41	17.41	107.81	0.026	21.06	0.335	-93.73
600 MHz	0.902	-134.04	15.04	101.48	0.027	15.39	0.322	-101.61
700 MHz	0.898	-141.62	13.18	96.16	0.028	10.74	0.315	-107.78
800 MHz	0.894	-147.78	11.71	91.54	0.028	6.79	0.312	-112.73
900 MHz	0.892	-152.91	10.51	87.43	0.028	3.35	0.312	-116.77
1.0 GHz	0.890	-157.30	9.53	83.68	0.028	0.28	0.314	-120.15
1.1 GHz	0.889	-161.12	8.71	80.20	0.028	-2.51	0.318	-123.04
1.2 GHz	0.889	-164.51	8.01	76.95	0.028	-5.07	0.322	-125.57
1.3 GHz	0.888	-167.56	7.41	73.86	0.028	-7.45	0.328	-127.82
1.4 GHz	0.888	-170.34	6.89	70.91	0.028	-9.69	0.335	-129.87
1.5 GHz	0.888	-172.91	6.44	68.07	0.028	-11.81	0.342	-131.77
1.6 GHz	0.888	-175.30	6.04	65.32	0.028	-13.82	0.349	-133.56
1.7 GHz	0.888	-177.55	5.69	62.65	0.027	-15.74	0.357	-135.25
1.8 GHz	0.888	-179.68	5.37	60.05	0.027	-17.58	0.364	-136.89
1.9 GHz	0.888	178.29	5.09	57.50	0.027	-19.34	0.373	-138.48
2.0 GHz	0.888	176.34	4.83	55.01	0.027	-21.04	0.381	-140.03
2.1 GHz	0.889	174.45	4.60	52.56	0.026	-22.69	0.389	-141.55
2.2 GHz	0.889	172.63	4.39	50.14	0.026	-24.27	0.397	-143.06
2.3 GHz	0.889	170.84	4.20	47.76	0.026	-25.80	0.405	-144.56
2.4 GHz	0.889	169.10	4.02	45.41	0.025	-27.28	0.413	-146.04
2.5 GHz	0.890	167.39	3.86	43.09	0.025	-28.70	0.421	-147.52
2.6 GHz	0.890	165.71	3.71	40.79	0.025	-30.08	0.429	-149.00
2.7 GHz	0.891	164.04	3.57	38.51	0.024	-31.41	0.437	-150.48
2.8 GHz	0.891	162.39	3.44	36.26	0.024	-32.69	0.445	-151.95
2.9 GHz	0.891	160.76	3.32	34.01	0.024	-33.92	0.452	-153.43
3.0 GHz	0.892	159.13	3.21	31.79	0.023	-35.10	0.459	-154.92
3.2 GHz	0.892	155.89	3.00	27.38	0.023	-37.31	0.473	-157.90
3.4 GHz	0.893	152.65	2.83	23.00	0.022	-39.32	0.486	-160.90
3.6 GHz	0.893	149.39	2.67	18.66	0.021	-41.09	0.499	-163.93
3.8 GHz	0.894	146.09	2.54	14.34	0.020	-42.63	0.510	-166.99
4.0 GHz	0.894	142.74	2.41	10.02	0.020	-43.90	0.521	-170.10
4.2 GHz	0.895	139.33	2.31	5.70	0.019	-44.88	0.530	-173.24
4.4 GHz	0.895	135.84	2.21	1.37	0.018	-45.53	0.539	-176.45
4.6 GHz	0.895	132.26	2.12	-2.98	0.018	-45.84	0.547	-179.71
4.8 GHz	0.895	128.59	2.04	-7.36	0.017	-45.78	0.554	176.97
5.0 GHz	0.895	124.80	1.97	-11.79	0.016	-45.32	0.561	173.56
5.2 GHz	0.895	120.90	1.91	-16.27	0.016	-44.47	0.566	170.07
5.4 GHz	0.895	116.87	1.85	-20.81	0.016	-43.25	0.571	166.48
5.6 GHz	0.895	112.70	1.80	-25.41	0.015	-41.72	0.575	162.78
5.8 GHz	0.895	108.38	1.75	-30.10	0.015	-39.97	0.579	158.96
6.0 GHz	0.895	103.92	1.70	-34.88	0.016	-38.13	0.581	155.00

To download the s-parameters in s2p format, go to the CGH27015 Product page.

Product Dimensions CGH27015F (Package Type — 440166)


NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.155	0.165	3.94	4.19
В	0.004	0.006	0.10	0.15
С	0.115	0.135	2.92	3.43
D	0.057	0.067	1.45	1.70
Е	0.195	0.205	4.95	5.21
F	0.045	0.055	1.14	1.40
G	0.545	0.555	13.84	14.09
Н	0.280	0.360	7.11	9.14
J	ø .100		2.5	54
К	0.3	75	9.5	53

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGH27015P (Package Type — 440196)

NULLE

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.155	0.165	3.94	4.19
В	0.003	0.006	0.10	0.15
С	0.115	0.135	2.92	3.17
D	0.057	0.067	1.45	1.70
E	0.195	0.205	4.95	5.21
F	0.045	0.055	1.14	1.40
G	0.195	0.205	4.95	5.21
Н	0.280	0.360	7.11	9.14

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH27015F	GaN HEMT	Each	CGPRETONSF 242C6
CGH27015P	GaN HEMT	Each	CGH27015P 8258
CGH27015F-AMP	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.