

CGH09120F 120 W, UHF - 2.5 GHz, GaN HEMT for WCDMA, LTE, MC-GSM

Description

The CGH09120F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH09120F ideal for MC-GSM, WCDMA and LTE amplifier applications. The transistor is supplied in a ceramic/metal flange package.

Package Type: 440095 PN: CGH09120F

Typical Performance Over 800-950 MHz ($T_c = 25^{\circ}C$) of Demonstration Amplifier

Parameter	800 MHz	850 MHz	900 MHz	950 MHz	Unit
Gain @ 43 dBm	19.2	21.0	21.6	21.6	dB
ACLR @ 43 dBm	-40.5	-40.5	-39.0	-36.5	dBc
Drain Efficiency @ 43 dBm	31.0	33.7	36.6	39.3	%

Notes:

¹ Measured in the CGH09120F-AMP amplifier circuit, under WCDMA 3GPP test model 1, 64 DPCH, 67% clipping, PAR = 8.81 dB @ 0.01 % Probability on CCDF.

Features

- UHF 2.5 GHz Operation
- 21 dB Gain
- -38 dBc ACLR at 20 W $\mathsf{P}_{\mathsf{AVE}}$
- 35% Efficiency at 20 W PAVE
- High Degree of DPD Correction Can be Applied

Large Signal Models Available for ADS and MWO

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120		2596
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Power Dissipation	P _{DISS}	56	W	
Storage Temperature	T _{STG}	-65, +150	°C.	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	30	mA	25%
Maximum Drain Current ¹	I _{DMAX}	12	A	— 25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	R _{θJC}	1.7	°C/W	85°C
Case Operating Temperature ³	T _c	-40, +150	°C	

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 3 Measured for the CGH09120F at P_{DISS} = 56 W

Electrical Characteristics ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹	_,,					•
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3		V _{DS} = 10 V, I _D = 28.8 mA
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	_	V _{DC}	V _{Ds} = 28, I _D = 1.2 A
Saturated Drain Current ²	I _{DS}	23.2	28.0	_	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR}	84	—	—	V _{DC}	V _{GS} = -8 V, I _D = 28.8 mA
RF Characteristics ³ ($T_c = 25^{\circ}C$, F	a = 2.5 GHz	unless of	therwise	noted)		
Saturated Output Power ^{3, 4}	P _{SAT}	_	120	_	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.2 \text{ A}$
Pulsed Drain Efficiency ³	η	_	75	_	%	$V_{DD} = 28 \text{ V}, \text{ I}_{DQ} = 1.2 \text{ A}, \text{ P}_{OUT} = \text{P}_{SAT}$
Modulated Gain ⁶	G _{SS}	20	21.5	_	dB	
WCDMA Linearity ⁶	ACLR	_	-38	-34	dBc	$V_{DD} = 28 V, I_{DQ} = 1.2 A, P_{OUT} = 43 dBm$
Modulated Drain Efficiency ⁶	η	31	35	—	%	
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 1.2 \text{ A}$, $P_{OUT} = 20 \text{ W CW}$
Dynamic Characteristics	· · · · ·					·
Input Capacitance	C _{GS}	_	35.3	_		
Output Capacitance	C _{DS}	_	9.1	_] pF	$V_{DS} = 28 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	C _{GD}	_	1.6	_]	

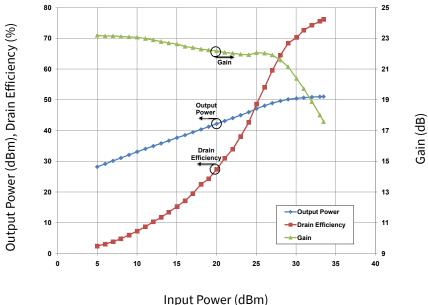
Notes:

¹ Measured on wafer prior to packaging ² Scaled from PCM data ⁵ Measured in CGH09120F-AMP

⁶ Single Carrier WCDMA, 3GPP Test Model 1, 64 DPCH, 67 % Clipping,

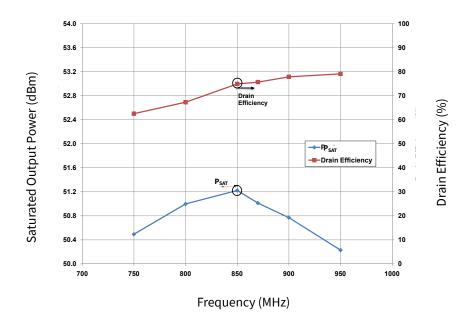
³ Pulse Width = 40 μ s, Duty Cycle = 5%

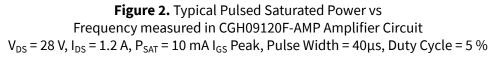
 4 P_{SAT} is defined as I_G = 10 mA peak


PAR = 8.81 dB @ 0.01 % Probability on CCDF

2 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

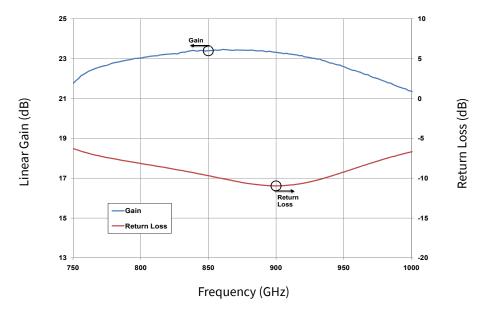
For further information and support please visit: <u>https://www.macom.com/support</u>

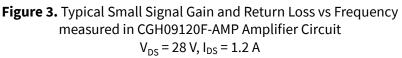



Typical Pulse Performance

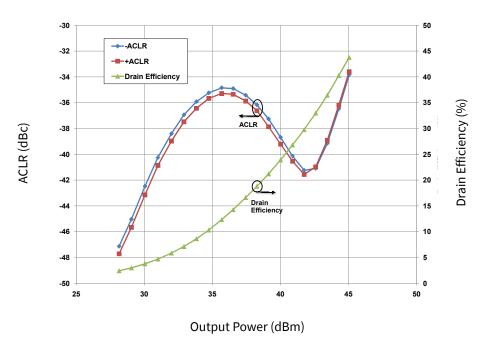
input Power (dBm)

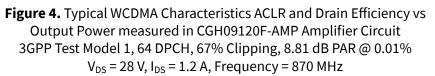
Figure 1. Typical Pulsed Output Power, Drain Efficiency, and Gain vs Input Power measured in CGH09120F-AMP Amplifier Circuit V_{DS} = 28 V, I_{DS} = 1.2 A, Freq = 870 MHz, Pulse Width = 40μs, Duty Cycle = 5%



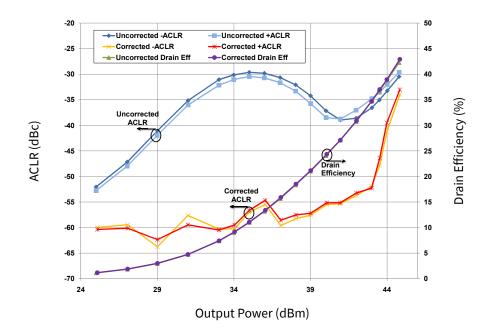


³ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

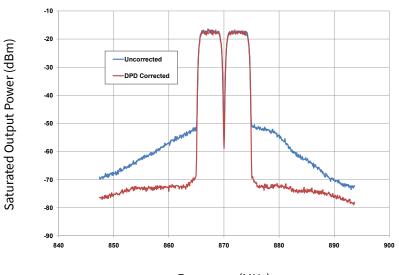



Typical Linear Performance

Typical WCDMA Performance



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 2.3, 2022-10-14


4

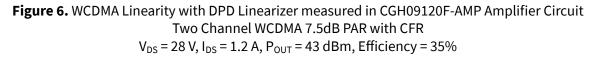

Typical WCDMA Digital Pre-Distortion (DPD) Performance

Figure 5. WCDMA Characteristics with and without DPD Correction ACLR and Drain Efficiency vs Output Power measured in CGH09120F-AMP Amplifier Circuit Two Channel WCDMA 7.5dB PAR with CFR V_{DS} = 28 V, I_{DS} = 1.2 A, Frequency = 870 MHz

Frequency (MHz)

⁵ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Typical Performance

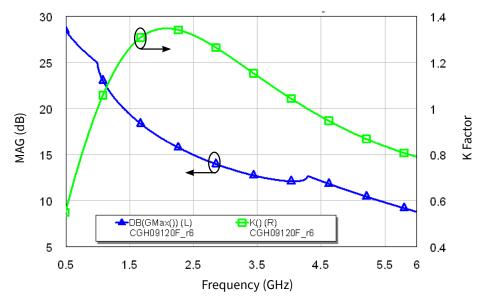


Figure 7. Simulated Maximum Available Gain and K Factor of the CGH09120F V_{DD} = 28 V, I_{DQ} = 1.2 A

Typical Noise Performance

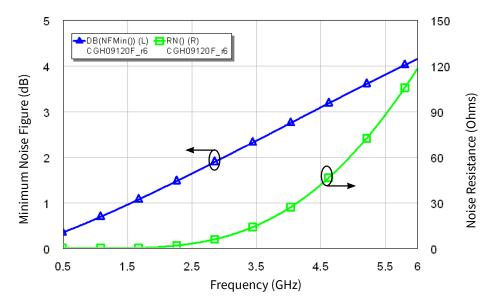
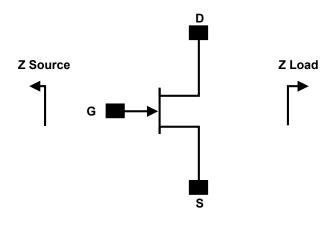


Figure 8. Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH09120F V_{DD} = 28 V, I_{DQ} = 1.2 A

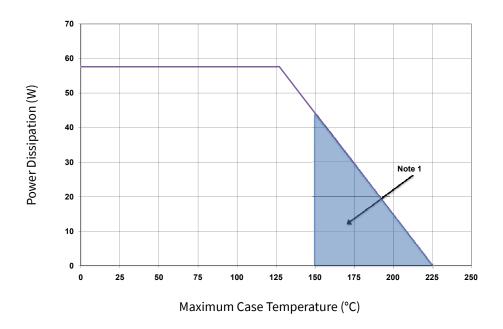
Electrostatic Discharge (ESD) Classifications


Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1A	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	C3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

⁶ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

Simulated Source and Load Impedances



Frequency (MHz)	Z Source	Z Load
700	0.75 - j 0.58	5.59 - j 2.12
750	0.84 - j 0.18	4.97 - j 1.25
800	0.90 + j 0.19	4.68 - j 0.37
850	0.95 + j 0.59	4.59 + j 0.45
900 1.02 + j 1.03		4.67 + j 1.19
950	1.17 + j 1.53	4.90 + j 1.82
1000	1.53 + j 2.10	5.28 + j 2.31

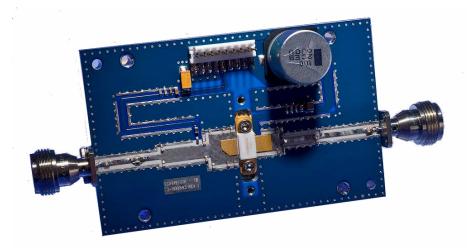
Notes:

 1 V $_{\rm DD}$ = 28 V, I $_{\rm DQ}$ = 1.2 A in the 440095 package 2 Impedances are extracted from CGH09120F-AMP demonstration circuit and are not source and load pull data derived from transistor

CGH09120F Power Dissipation De-rating Curve

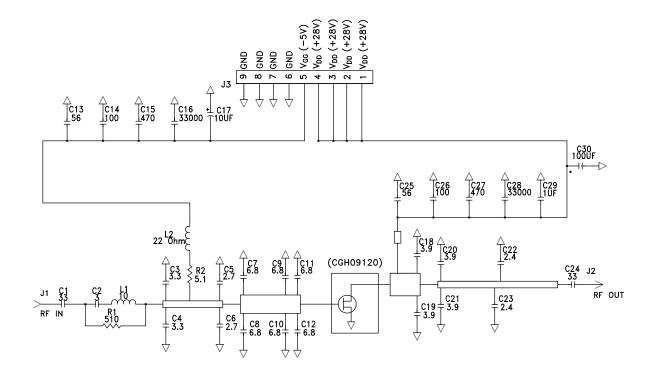
Note: ¹ Area exceeds Maximum Case Operating Temperature (See Page 2)

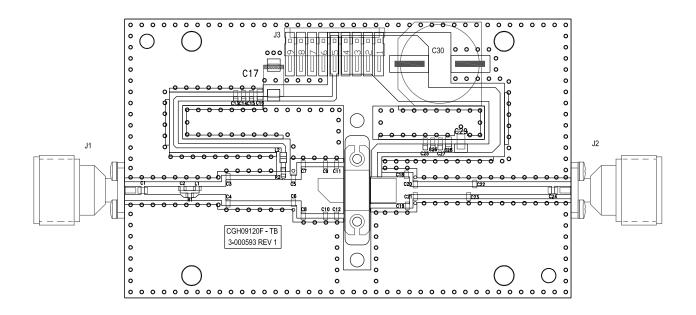
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.


7

CGH09120F-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 1/16W, 0603, 1%, 511 OHMS	1
R2	RES, 1/16W, 0603, 1%, 5.1 OHMS	1
C1, C24	CAP, 33pF +/- 5%, 250V, 0805, ATC 600F	2
C2	CAP, 3.0pF, +/- 0.1pF, 0603, ATC600S	1
C3, C4	CAP, 3.3pF, +/- 0.1pF, 0603, ATC600S	2
C5, C6	CAP, 2.7pF, +/- 0.1pF, 0603, ATC600S	2
C7, C8, C9, C10, C11, C12	CAP, 6.8pF, +/- 0.25pF, 0603, ATC600S	6
C13, C25	CAP, 56pF +/- 5%, 0603, ATC600S	2
C14, C26	CAP, 100pF, +/-5%, 0603, ATC600S	2
C15, C27	CAP, 470pF, 5%, 100V, 0603, X7R	2
C16, C28	CAP, 33000pF, 0805, 100V, X7R	2
C17	CAP, 10μF, 16V, TANTALUM	1
C18, C19, C20, C21	CAP, 3.9pF, +/- 0.1pF, 0603, ATC600S	4
C22, C23	CAP, 2.4pF, +/-0.1pF, 0603, ATC600S	2
C29	CAP, 1.0μF, +/-10%, 1210, 100V, X7R	1
C30	CAP, 100µF, 160V, ELECTROLYTIC	1
L1	INDUCTOR, CHIP, 10nH, 0603, SMT	1
L2	FERRITE, 22 OHM, 0805, BLM21PG220SN1	1
J1, J2	CONN, N-Type, Female, 0.500 SMA Flange	2
J3	CONN, Header, RT> PLZ, 0.1 CEN, LK, 9 POS	1
_	PCB, RO4003, Er = 3.38, h = 32 mil	1
_	CGH09120F	1


CGH09120F-AMP Demonstration Amplifier Circuit

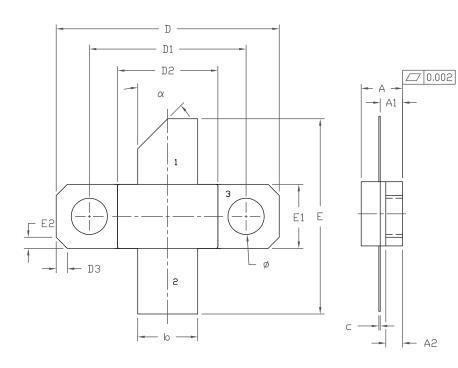

8 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 2.3, 2022-10-14

CGH09120F-AMP Demonstration Amplifier Circuit Schematic

CGH09120F-AMP Demonstration Amplifier Circuit Outline

9 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: Rev. 2.3, 2022-10-14

Typical Package S-Parameters for CGH09120F (Small Signal, V_{DS} = 28 V, I_{DQ} = 1.2 A, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.962	-177.69	4.16	80.41	0.006	15.01	0.812	-179.78
600 MHz	0.962	-178.94	3.46	77.69	0.006	17.16	0.814	179.92
700 MHz	0.962	-179.97	2.97	75.09	0.006	19.38	0.815	179.65
800 MHz	0.962	179.14	2.59	72.58	0.006	21.64	0.816	179.40
900 MHz	0.962	178.33	2.30	70.14	0.006	23.89	0.818	179.15
1.0 GHz	0.962	177.59	2.07	67.74	0.007	26.12	0.820	178.90
1.1 GHz	0.962	176.88	1.88	65.40	0.007	28.30	0.821	178.64
1.2 GHz	0.962	176.21	1.73	63.09	0.007	30.42	0.823	178.37
1.3 GHz	0.961	175.55	1.59	60.83	0.007	32.47	0.825	178.09
1.4 GHz	0.961	174.91	1.48	58.60	0.008	34.43	0.827	177.80
1.5 GHz	0.961	174.28	1.38	56.40	0.008	36.30	0.829	177.50
1.6 GHz	0.961	173.65	1.29	54.24	0.008	38.06	0.831	177.18
1.7 GHz	0.961	173.02	1.22	52.12	0.008	39.70	0.833	176.84
1.8 GHz	0.960	172.40	1.15	50.02	0.009	41.24	0.835	176.49
1.9 GHz	0.960	171.77	1.09	47.96	0.009	42.65	0.836	176.13
2.0 GHz	0.960	171.14	1.04	45.93	0.010	43.95	0.838	175.75
2.1 GHz	0.959	170.50	1.00	43.92	0.010	45.13	0.840	175.35
2.2 GHz	0.959	169.86	0.95	41.94	0.011	46.19	0.841	174.93
2.3 GHz	0.958	169.20	0.92	39.99	0.011	47.13	0.843	174.50
2.4 GHz	0.958	168.54	0.88	38.07	0.012	47.96	0.844	174.05
2.5 GHz	0.957	167.86	0.85	36.16	0.013	48.68	0.846	173.59
2.6 GHz	0.956	167.17	0.82	34.28	0.013	49.30	0.847	173.11
2.7 GHz	0.956	166.46	0.80	32.42	0.014	49.81	0.848	172.61
2.8 GHz	0.955	165.74	0.78	30.58	0.015	50.22	0.849	172.10
2.9 GHz	0.954	165.00	0.76	28.75	0.015	50.54	0.850	171.56
3.0 GHz	0.953	164.24	0.74	26.94	0.016	50.76	0.850	171.01
3.2 GHz	0.951	162.65	0.71	23.34	0.018	50.94	0.851	169.86
3.4 GHz	0.948	160.96	0.68	19.78	0.021	50.78	0.851	168.62
3.6 GHz	0.945	159.15	0.67	16.22	0.023	50.30	0.850	167.31
3.8 GHz	0.941	157.21	0.65	12.64	0.026	49.50	0.848	165.90
4.0 GHz	0.936	155.11	0.65	9.02	0.029	48.38	0.846	164.39
4.2 GHz	0.931	152.81	0.64	5.33	0.033	46.95	0.842	162.78
4.4 GHz	0.924	150.30	0.65	1.52	0.038	45.18	0.837	161.04
4.6 GHz	0.916	147.52	0.66	-2.44	0.043	43.05	0.831	159.17
4.8 GHz	0.907	144.44	0.67	-6.59	0.049	40.54	0.823	157.14
5.0 GHz	0.896	140.98	0.69	-11.01	0.056	37.59	0.813	154.94
5.2 GHz	0.882	137.08	0.72	-15.75	0.065	34.17	0.801	152.55
5.4 GHz	0.865	132.66	0.75	-20.88	0.075	30.19	0.786	149.94
5.6 GHz	0.844	127.59	0.79	-26.51	0.087	25.59	0.769	147.10
5.8 GHz	0.818	121.74	0.84	-32.73	0.102	20.26	0.749	143.99
6.0 GHz	0.787	114.95	0.90	-39.65	0.119	14.11	0.725	140.60

To download the s-parameters in s2p format, go to the CGH09120F Product page.

¹⁰ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 2.3, 2022-10-14 For further information and support please visit:

Product Dimensions CGH09120F (Package Type – 440095)

NDTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M -1994.

2. CONTROLLING DIMENSION: INCH.

3. ADHESI∨E FROM LID MAY EXTEND A MAXIMUM OF 0.020″ BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF $0.008^{\prime\prime}$ IN ANY DIRECTION.

	INC	HES	MILLIM	MILLIMETERS	
DIM	MIN	MAX	MIN	MAX	
A	0.145	0.165	3.68	4.19	
A1	0.077	0.087	1.96	2.21	
A2	0.055	0.065	1.40	1.65	
ь	0.210	0.220	5.33	5.59	2×
с	0.004	0.006	0.10	0.15	
D	0.795	0.805	20.19	20.45	
D1	0.557	0.567	14.15	14.40	
D2	0.355	0.365	9.02	9.27	
D3	0.040	D TYP	1.02	TYP	4x
E	0.670	0.730	17.02	18.54	
E1	0.225	0.235	5.72	5.97	
E2	0.040 TYP		1.02 TYP		4x
ø	0.13	0.130 TYP		3.30 TYP	
α	45' REF		45' REF		

PIN 1. GATE

2. DRAIN

3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH09120F	GaN HEMT	Each	Compare O
CGH09120F-AMP	Test board with GaN HEMT installed	Each	

12 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u> Rev. 2.3, 2022-10-14

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY. EXPRESS OR IMPLIED. RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹³ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 2.3, 2022-10-14 For further information and support please visit: