

CG2H30070F

70 W, DC - 4.0 GHz, 28 V, RF Power GaN HEMT

Description

The CG2H30070F is an internally matched gallium nitride (GaN) high electron mobility transistor (HEMT). The CG2H30070F, operating from a 28 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CG2H30070F ideal for linear and compressed amplifier circuits. The transistor is available in a flange package.

Package Types: 440224 PN's: CG2H30070F

Features

- 0.5 3.0 GHz application circuit
- $85 \text{ W P}_{\text{OUT}}$ typical at 28 V
- 10 dB power gain
- 58% drain efficiency
- Internally matched

Applications

- **Broadband amplifiers**
- Electronic counter measures
- Signal jamming
- Milcom
- Radar
- Data link

Typical Performance Over 0.5 - 3.0 GHz ($T_c = 25$ °C)

Parameter	500 MHz	1000 MHz	1500 MHz	2000 MHz	2500 MHz	3000 MHz	Units
Small Signal Gain (S21)	16.7	15.3	17.3	15	16.3	14.8	dB
Gain @ P _{IN} = 39 dBm	10.3	10.4	10.6	9.8	11.4	10.5	dB
Output Power @ P _{IN} = 39 dBm	85	88	90	76	109	89	W
Efficiency @ P _{IN} = 39 dBm	63	57.5	55.6	63.4	62.1	59.8	%

Notes:

Operating conditions are CW

Absolute Maximum Ratings (Not Simultaneous) at 25 °C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	Volts	25 °C
Gate-to-Source Voltage	V _{GS}	-10, +2	Volts	25 °C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Maximum Forward Gate Current	I _{GMAX}	28.8	mA	25 °C
Maximum Drain Current ¹	I _{DMAX}	12	А	25 °C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	$R_{\theta JC}$	1.5	°C/W	85 °C, CW, P _{DISS} = 115 W
Case Operating Temperature ²	T _c	-40, +150	°C	

Notes:

Electrical Characteristics (T_c = 25 °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{\rm GS(th)}$	-3.8	-2.8	-2.3	V _{DC}	$V_{DS} = 10 \text{ V}, I_{D} = 28.8 \text{ mA}$
Saturated Drain Current ²	I _{DS}	20.7	28.8	-	Α	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	V _{BR}	84	_	-	V _{DC}	$V_{GS} = -8 \text{ V}, I_{D} = 28.8 \text{ mA}$
RF Characteristics ³ ($T_c = 25 ^{\circ}\text{C}, F_0 = 30 ^{\circ}\text{C}$	000 MHz Unle	ess Otherv	vise Notec	d)		
Small Signal Gain	G _{ss}	15.6	17.7	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = 10 \text{ dBm}, CW$
Power Gain	G _P	-	12	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = 38 \text{ dBm, CW}$
Output Power	Роит	48.25	50	-	dBm	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = 38 \text{ dBm, CW}$
Drain Efficiency⁴	η	61	71	-		$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = 38 \text{ dBm, CW}$
Output Mismatch Stress	VSWR	-	-	5:1	Ψ	No Damage at All Phase Angles, $V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{OUT} = 100 \text{ W CW}$
Dynamic Characteristics						
Input Capacitance	C _{GS}	-	68.1	_	pF	$V_{DS} = 28 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$
Output Capacitance	C _{DS}	-	11.3	_	pF	$V_{DS} = 28 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	C _{GD}	-	1.49	_	pF	V _{DS} = 28 V, V _{gs} = -8 V, f = 1 MHz

Notes:

¹ Current limit for long-term, reliable operation.

² Refer to the Application Note on soldering

³ See also, the power dissipation de-rating curve on Page 8.

¹ Measured on wafer prior to packaging per side of device.

² Scaled from PCM data.

³ Measurements are to be performed using the production test fixture AD-838279F-TB (Flange).

⁴ Drain Efficiency = P_{OUT}/P_{DC} .

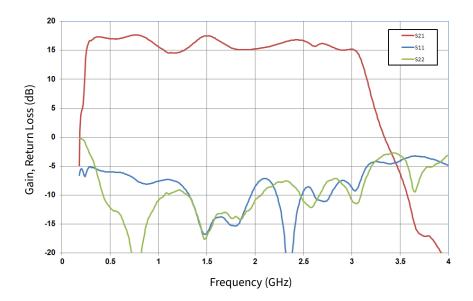


Figure 1. Small Signal Gain and Return Losses of the CG2H30070F vs Frequency as Measured in the Single-ended Demonstration Amplifier CG2H30070F-AMP $\rm V_{DD}=28~V,~I_{DQ}=1.0~A$

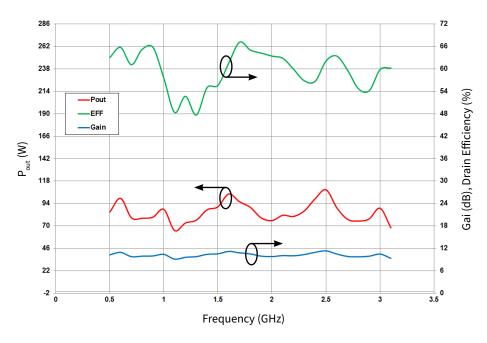


Figure 2. Output Power and Efficiency of the CG2H30070F vs Frequency as Measured in the Single-ended Demonstration Amplifier CG2H30070F-AMP CW Operation, $V_{DD} = 28 \text{ V}$, $I_{DO} = 1.0 \text{ A}$, $P_{IN} = 39 \text{ dBm}$

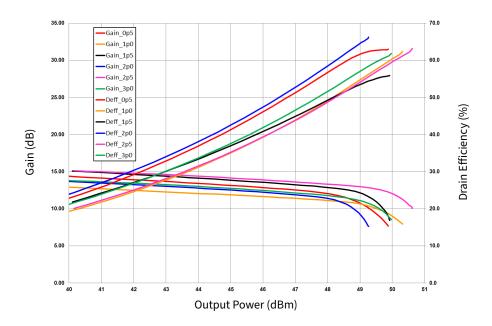


Figure 3. Gain and Drain Efficiency vs Output Power at Various Frequencies as Measured in the Single-ended Demonstration Amplifier CG2H30070F-AMP CW-Operation, $V_{DD} = 28 \text{ V}$, $I_{DO} = 1.0 \text{ A}$

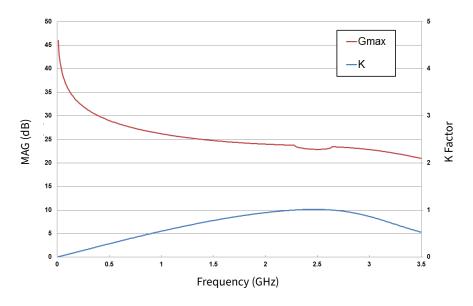


Figure 4. Simulated Maximum Available Gain and K-factor of the CG2H30070F $\rm V_{DD}$ = 28 V, $\rm I_{DO}$ = 1.0 A

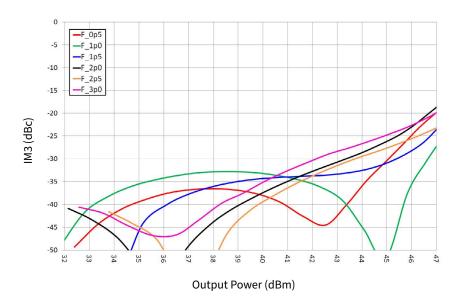


Figure 5. IM3 vs Output Power of the CG2H30070F as Measured in the Single-ended Demonstration Amplifier CG2H30070F-AMP $I_{_{\rm DO}}=300~{\rm mA, Temperature}=25~{\rm ^{\circ}C}$

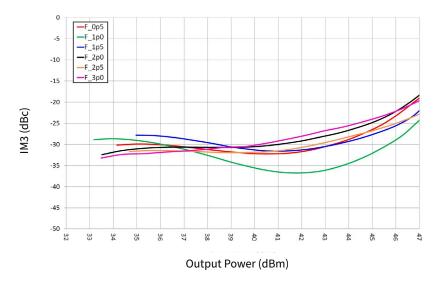


Figure 6. IM3 vs Output Power of the CG2H30070F as Measured in the Single-ended Demonstration Amplifier CG2H30070F-AMP $I_{DQ}=1000~\text{mA}, \text{Temperature}=25~^{\circ}\text{C}$

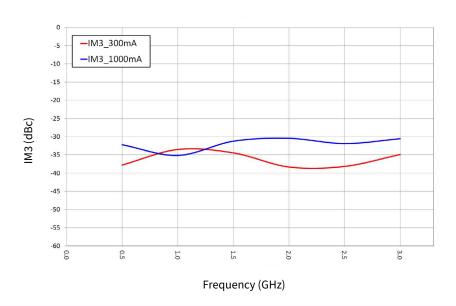
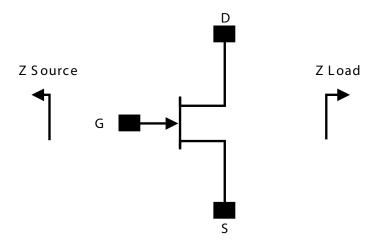
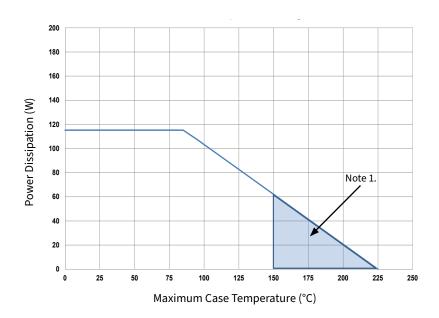



Figure 7. IM3 vs Frequency of the CG2H30070F as Measured in the Single-ended Demonstration Amplifier CG2H30070F-AMP $P_{OUT} = 40 \text{ dBm}$, Temperature = 25 °C

Simulated Source and Load Impedances


Frequency (MHz)	Z Source	Z Load
500	9 - j5.15	5.79 - j2.56
1000	7.45 - j3.82	4.76 - j1.35
1500	1.7 - j3.24	3.55 + j0.8
2000	2.33 - j0.06	4.19 + j0.19
2500	4.57 - j2.15	4.34 - j1.73
3000	1.07 - j1.04	2.65 - j1.57

Note 1. $\rm V_{DD}$ = 28 V, $\rm I_{DQ}$ = 1.0 A in the 440224 package.

Note 2. Optimized for power, gain, $\mathbf{P}_{\text{SAT}},$ and drain efficiency.

Note 3. When using this device at low frequency, series resistors should be used to maintain amplifier stability.

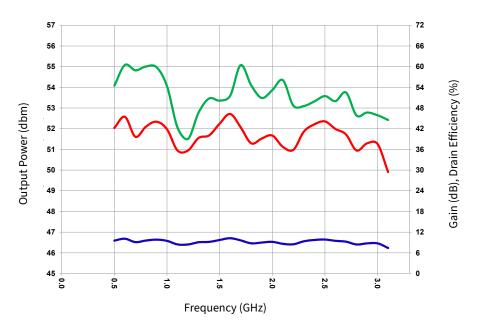
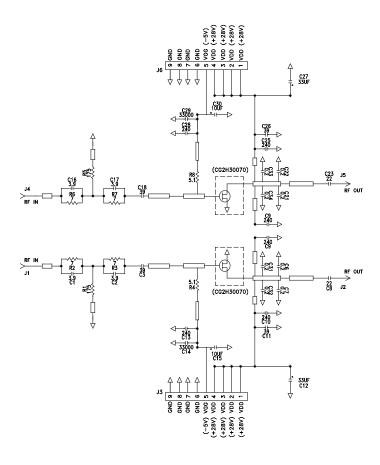
CG2H30070F Power Dissipation De-Rating Curve, CW

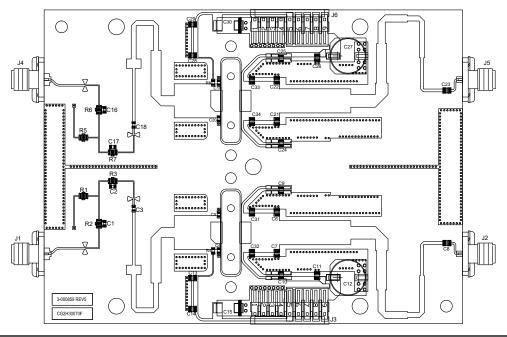
Note 1. Area exceeds maximum case operating temperature (see page 2).

Typical Combined Performance

The previous plots were created from one side of the wideband application circuit, CG2H30070F-AMP2 in order to demonstrate the RF performance of the transistor over a wide frequency band. The application circuit CG2H30070FAMP2 is designed to combine two CG2H30070F in order to achieve 100W CW from 0.5-3.0 GHz instantaneously. Figure 8 shows the typical RF performance from CG2H30070F-AMP2.

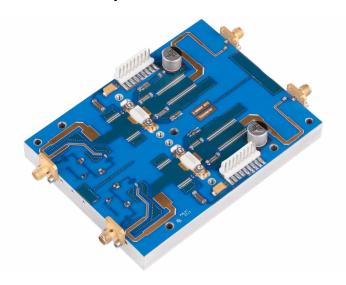
To achieve this performance, couplers from Innovative Power Products were used. The IPP-2256 uses N-type connectors in order to handle the higher output power from this application circuit and lead to the reason for the spacing seen in the SMA connectors in the application amplifier CG2H30070F-AMP2.

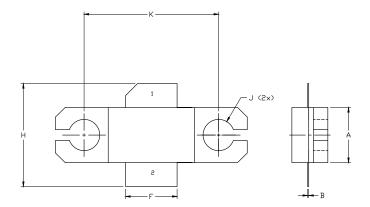

Figure 8. Output Power, Power Gain, and Drain Efficiency vs Frequency of Two CG2H30070F Combined as Measured in the Combined Demonstration Amplifier CG2H30070F-AMP2 with Couplers $V_{DD} = 28 \text{ V}, I_{DO} = 2 \text{ A}, P_{IN} = 42.5 \text{ dBm}, Temperature = 25 °C$

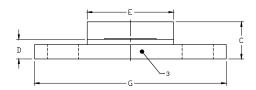
CG2H30070F-AMP2 Demonstration Amplifier Circuit Schematic

CG2H30070F-AMP2 Demonstration Application Circuit Outline



CG2H30070F-AMP Demonstration Amplifier Circuit Bill of Materials


Designator	Description	Qty
C11, C26	CAP, 39 pF, ±5%, 250 V, 0805, ATC600F	2
C8, C23	CAP, 22 pF, ±5%, 250 V, 0805, ATC600F	2
C3, C18	CAP, 39 pF, ±5%, 0603, ATC	
C14, C29	CAP, 33000 PF, 0805, 100 V, X7R	2
C15, C30	CAP, 10 UF, 16 V TANTALUM	2
C13, C9, C10, C28, C24, C25	CAP, 240 pF, ±5%, 250 V, 0805, ATC600F	6
C6, C7, C31, C32, C21, C22, C33, C34	CAP, 0.2 pF, ±0.05% pF, 250 V, 0805, ATC600F	8
C1, C2, C16, C17	CAP, 3.9 pF, ±0.1 pF, 0603, ATC	4
R2, R3, R6, R7	RES, 7 OHM, 0805, HIGH POWER SMT, IMS	
R1, R5	RES, 175 OHM, 0805, HIGH POWER SMT, IMS	
R4, R8	RES, 5 OHM, 0603, SMT	2
C12, C27	CAP, 33 UF, 20%, 100 V, ELEC	2
J1, J2, J4, J5	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20 MIL	4
J3, J6	HEADER RT>PLZ .1CEN LK 9POS	2
	PCB, RO6035HTC, 3.6" x 4.8" x 0.010", CG2H30070F	1
	BASEPLATE, AI, 4.8 x 3.6 x 0.5	


CG2H30070F-AMP2 Demonstration Amplifier Circuit

Product Dimensions CG2H30070F (Package Type — 440224)

NOTES:

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020° BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.225	0.235	5.72	5.97	
В	0.004	0.006	0.10	0.15	
С	0.145	0.165	3.68	4.19	
D	0.077	0.087	1.96	2.21	
Ε	0.355	0.365	9.02	9.27	
F	0.210	0.220	5.33	5.59	
G	0.795	0.805	20.19	20.45	
Н	0.400	0.460	10.16	11.68	
J	ø .130		3.30		
k	0.562		14.27		

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CG2H30070F	GaN HEMT	Each	CENTRO LOT
CG2H30070F-AMP2	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.