AM-123 / AMC-123

High Performance Amplifier, 10 dB Gain
5 - 500 MHz

Features
- 3.5 dB Mid-band Noise Figure
- 42 dBm Mid-band Intercept

Description
The AM-123 is a coupler feedback amplifier with high intercept and compression points. The use of coupler feedback minimizes noise figure and current in a high intercept amplifier. This amplifier is available in both the flat pack (FP-7) and the connectorized (C-32) packages. Due to the internal power dissipation the thermal rise is minimized. The ground plane on the PC board should be configured to remove heat from under the package.

AM-123 is ideally suited for use where a high intercept, high reliability amplifier is required.

C-32

FP-7

Dimensions are in mm unless otherwise noted.
.xxx = ±0.010 (.xx = ±0.85)
.xx = ±0.02 (.x = ±0.5)
AM-123 Positive voltage only.
Weight (approx.) 0.09 ounces, 2.5 grams

Pin Configuration

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF OUT</td>
</tr>
<tr>
<td>2, 3, 6, 7</td>
<td>GND</td>
</tr>
<tr>
<td>4, 8</td>
<td>DC IN</td>
</tr>
<tr>
<td>5</td>
<td>RF IN</td>
</tr>
</tbody>
</table>

Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM-123 PIN</td>
<td>Flat pack (FP-7)</td>
</tr>
<tr>
<td>AMC-123 SMA</td>
<td>Connectorized (C32)</td>
</tr>
</tbody>
</table>
High Performance Amplifier, 10 dB Gain
5 - 500 MHz

Electrical Specifications\(^1,2\): \(T_A = -55°C\) to +85°C Case Temperature

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Frequency</th>
<th>Units</th>
<th>Typical</th>
<th>Guaranteed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>25ºC</td>
<td>0º to 50ºC</td>
</tr>
<tr>
<td>Small Signal Gain (min.)</td>
<td>5 - 250 MHz</td>
<td>dB</td>
<td>9.8</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>250 - 500 MHz</td>
<td></td>
<td>9.3</td>
<td>9.0</td>
</tr>
<tr>
<td>Gain Flatness (max.)</td>
<td>5 - 500 MHz</td>
<td>dB</td>
<td>±0.3</td>
<td>±0.7</td>
</tr>
<tr>
<td>Reverse Isolation</td>
<td>5 - 500 MHz</td>
<td>dB</td>
<td>16</td>
<td>—</td>
</tr>
<tr>
<td>Noise Figure (max.)</td>
<td>5 - 500 MHz</td>
<td>dB</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Power Output @ 1 dB comp. (min.)</td>
<td>—</td>
<td>dBm</td>
<td>19.0</td>
<td>18.0</td>
</tr>
<tr>
<td>IP3</td>
<td>5 - 500 MHz</td>
<td>dBm</td>
<td>34</td>
<td>33</td>
</tr>
<tr>
<td>IP2</td>
<td>5 - 500 MHz</td>
<td>dBm</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>Second Order Harmonic IP</td>
<td>5 - 500 MHz</td>
<td>dBm</td>
<td>54</td>
<td>—</td>
</tr>
<tr>
<td>VSWR In/Out</td>
<td>5 - 500 MHz</td>
<td>Max.</td>
<td>2.1:1 / 2.1:1</td>
<td>2.3:1 / 2.2:1</td>
</tr>
<tr>
<td></td>
<td>20 - 400 MHz</td>
<td></td>
<td>1.6:1 / 1.8:1</td>
<td>2.0:1 / 2.0:1</td>
</tr>
<tr>
<td>DC Current @ 15 Volts (max.)</td>
<td>—</td>
<td>mA</td>
<td>65</td>
<td>69</td>
</tr>
</tbody>
</table>

1. All specifications apply when operated at 15 VDC, with 50 ohms source and load impedance.
2. Heat Sinking: Operation at case temperature above 95°C is not recommended. Heat sinking adequate to dissipate 1 W must be provided in use.

Absolute Maximum Ratings\(^3,4\)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Absolute Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Power</td>
<td>23 dBm</td>
</tr>
<tr>
<td>(V_{\text{BIAS}})</td>
<td>15.75 V</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>-55°C to +85°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-65°C to +125°C</td>
</tr>
</tbody>
</table>

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.
S-Parameter Data

<table>
<thead>
<tr>
<th>Frequency (MHz)</th>
<th>S11 MAG/ANG</th>
<th>S21 MAG/ANG</th>
<th>S12 MAG/ANG</th>
<th>S22 MAG/ANG</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.21/-69.9</td>
<td>3.15/-158.8</td>
<td>0.11/171.3</td>
<td>0.15/92.8</td>
</tr>
<tr>
<td>10</td>
<td>0.11/-81.5</td>
<td>3.17/-172.2</td>
<td>0.11/175.0</td>
<td>0.06/116.1</td>
</tr>
<tr>
<td>20</td>
<td>0.08/-88.5</td>
<td>3.18/-178.4</td>
<td>0.12/171.7</td>
<td>0.04/139.8</td>
</tr>
<tr>
<td>50</td>
<td>0.06/-108.4</td>
<td>3.17/162.9</td>
<td>0.13/159.9</td>
<td>0.03/174.7</td>
</tr>
<tr>
<td>100</td>
<td>0.05/-122.8</td>
<td>3.14/142.8</td>
<td>0.13/141.4</td>
<td>0.04/-163.9</td>
</tr>
<tr>
<td>200</td>
<td>0.05/-141.8</td>
<td>3.11/104.8</td>
<td>0.13/102.1</td>
<td>0.04/-119.4</td>
</tr>
<tr>
<td>300</td>
<td>0.07/-155.4</td>
<td>3.09/66.9</td>
<td>0.12/64.9</td>
<td>0.14/-114.6</td>
</tr>
<tr>
<td>400</td>
<td>0.15/177.2</td>
<td>3.08/26.7</td>
<td>0.11/27.3</td>
<td>0.22/-153.2</td>
</tr>
<tr>
<td>500</td>
<td>0.20/151.3</td>
<td>3.05/-21.9</td>
<td>0.09/-20.9</td>
<td>0.25/83.4</td>
</tr>
</tbody>
</table>
AM-123 / AMC-123

High Performance Amplifier, 10 dB Gain
5 - 500 MHz

Typical Performance Curves

Gain

![Gain Curve](image)

VSWR

![VSWR Curve](image)

Noise Figure

![Noise Figure Curve](image)

P1dB

![P1dB Curve](image)

Intermodulation Intercept, IP2

![IP2 Curve](image)

Intermodulation Intercept, IP3

![IP3 Curve](image)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.