Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit

Data Sheet

CX28331/CX28332/CX28333 (−1x)
Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Level</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>—</td>
<td>2/2003</td>
<td>Initial Release [Document number 28333-DSH-001-A] Updated LBO to 450 feet Incorporate Errata #500371A Removed CX2833i-3x information (see prior document) Removed EVM, IBIS, and JAT Appendices Fixed description of transmit AIS during loopback operations Added loopback diagrams Updated PCB design considerations Added power sequencing requirements General corrections</td>
</tr>
</tbody>
</table>

Information in this document is provided in connection with Mindspeed Technologies (“Mindspeed”) products. These materials are provided by Mindspeed as a service to its customers and may be used for informational purposes only. Mindspeed assumes no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and product descriptions at any time, without notice. Mindspeed makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Mindspeed’s Terms and Conditions of Sale for such products, Mindspeed assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MINDSPEED PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MINDSPEED FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MINDSPEED SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Mindspeed products are not intended for use in medical, lifesaving or life sustaining applications. Mindspeed customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to fully indemnify Mindspeed for any damages resulting from such improper use or sale.

The following are trademarks of Conexant Systems, Inc.: Mindspeed Technologies™, the Mindspeed™ logo, and “Build It First”™. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.

For additional disclaimer information, please consult Mindspeed Technologies Legal Information posted at www.mindspeed.com which is incorporated by reference.
CX28331/CX28332/CX28333 (–1x)

Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit

The CX28333 is a three-channel, DS3/E3/STS-1, fully integrated Line Interface Unit (LIU) device. It is configured via external pins and does not require a microprocessor interface. Each channel has an independent receive equalizer requiring no user configuration. Additionally, each channel has a programmable transmit pulse shaper that can be set to ensure that the transmit pulse meets the pulse mask requirement for the digital cross-connect. The CX28332 is a dual-channel, and the CX28331 is a single-channel LIU with performance identical to the CX28333.

The CX28333 gives the user new economies of scale in concentrator applications where three DS3 or STS-1 channels are concentrated into a single STS-3 channel. Each line interface is reduced to 1:1 coupling transformers, terminating resistors, and a capacitor.

NOTE: In this document, ‘i’ is used to represent the number of channels: i = 1 (CX28331), i = 2 (CX28332), and i = 3 (CX28333).

Functional Block Diagram

Distinguishing Features
- Programmable pulse shaper to meet cross-connect pulse masks (ANSI T1.102-1993)
- Meets jitter tolerance and jitter generation specifications of Bellcore GR499, GR253 and ETSI TBR24
- Alarms for coding violation and loss of signal
- Full diagnostic loopback capability
- Uses a minimum of external components
- Compliant with ITU-G.703 and ETSI TBR24
- Independent power down mode per channel
- Easily interfaced to the DS3/E3 Framer IC (CX28342/3/4/6/8 and CN8330)
- Selectable B3ZS/HDB3 encoding/decoding

Physical Characteristics
- 80-pin ETQFP package
- Single 3.3 V power supply
- 1 W maximum power dissipation (CX28333)
- -40 °C to +85 °C temperature range
- 5 V-tolerant pins
- TTL digital pins

Applications
- Digital Cross-Connect Systems
- Routers
- ATM Switches
- Channelized Line Aggregation Units
- Test Equipment
- Channel Service Units
- Multiplexers
Ordering Information

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Package</th>
<th>Description</th>
<th>Operating Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>CX28331-1x</td>
<td>80-Pin ETQFP</td>
<td>Single-channel LIU</td>
<td>-40 °C to +85 °C</td>
</tr>
<tr>
<td>CX28332-1x</td>
<td>80-Pin ETQFP</td>
<td>Dual-channel LIU</td>
<td>-40 °C to +85 °C</td>
</tr>
<tr>
<td>CX28333-1x</td>
<td>80-Pin ETQFP</td>
<td>Triple-channel LIU</td>
<td>-40 °C to +85 °C</td>
</tr>
</tbody>
</table>
Table of Contents

- **Table of Contents** ... v
- **List of Figures** .. vii
- **List of Tables** .. ix

1.0 Pin Description .. 1-1
 1.1 Pin Assignments ... 1-1

2.0 Functional Description .. 2-1
 2.1 Overview .. 2-1
 2.2 Transmitter .. 2-3
 2.2.1 AMI B3ZS/HDB3 Encoder 2-3
 2.2.2 Pulse Shaper ... 2-3
 2.2.3 Line Driver .. 2-4
 2.2.3.1 Transmit Pulse Mask Templates 2-5
 2.2.4 Alarm Indication Signal (AIS) Generator 2-8
 2.2.5 Jitter Generation (Intrinsic) 2-8
 2.3 Receiver .. 2-9
 2.3.1 Receive Sensitivity .. 2-9
 2.3.2 AGC/VGA Block ... 2-9
 2.3.3 Receive Equalizer ... 2-9
 2.3.4 The PLL Clock Recovery Circuit 2-10
 2.3.5 Loss Of Signal (LOS) Detector 2-10
 2.3.6 B3ZS/HDB3 Decoder With Bipolar Violation Detector 2-10
 2.3.7 Data Squelching ... 2-11
 2.4 Jitter Tolerance .. 2-11
 2.4.1 Jitter Transfer .. 2-13
 2.5 Additional CX2833i Functions 2-14
 2.5.1 Bias Generator .. 2-14
 2.5.2 Power-On Reset (POR) ... 2-14
 2.5.3 Loopback Multiplexers (MUXes) 2-14
 2.6 Mechanical Specifications 2-17
2.7 Electrical Characteristics .. 2-18
 2.7.1 Absolute Maximum Ratings 2-18
 2.7.2 ESD Ratings .. 2-19
 2.7.3 Recommended Operating Conditions 2-19

2.8 DC Characteristics .. 2-20

2.9 AC Characteristics .. 2-21

3.0 Applications .. 3-1

3.1 PCB Design Considerations for the CX2833i 3-1
 3.1.1 Power Supply and Ground Plane 3-1
 3.1.2 Component Placement .. 3-1
 3.1.2.1 RBIAS Resistor ... 3-1
 3.1.2.2 VGG Decoupling ... 3-2
 3.1.2.3 Termination Resistors and Capacitors 3-2
 3.1.3 Impedance Matching ... 3-2
 3.1.4 Other Passive Parts .. 3-2
 3.1.5 IBIS Models ... 3-3
 3.1.6 Recommended Vendors .. 3-3

Appendix A: Applicable Standards ... A-1

Appendix B: Exposed Thin Quad Flat (ETQFP) Pack B-1
 B.1 Introduction .. B-2
 B.2 Package Thermal Characterization B-3
 B.2.1 Heat Removal Path ... B-3
 B.2.2 Thermal Lands ... B-3
 B.2.3 PCB Design ... B-5
 B.2.4 Thermal Test Structure B-6
 B.2.4.1 Test Environment B-6
 B.2.4.2 Thermal Test Boards B-6
 B.2.5 Package Thermal Performance B-7
 B.2.5.1 Calculation Guidelines B-7
 B.2.5.2 Package Thermal Resistance B-7

B.3 Solder Stencil Determination .. B-9

B.4 Solder Reflow Profile .. B-9

Appendix C: Power Sequencing ... C-1
List of Figures

Figure 1-1. CX28331-1x Pin Diagram ... 1-2
Figure 1-2. CX28332-1x Pin Diagram ... 1-3
Figure 1-3. CX28333-1x Pin Diagram ... 1-4
Figure 2-1. Typical Application Of Single CX2833i Channel 2-2
Figure 2-2. Pulse Shaper .. 2-3
Figure 2-3. Pulse Measurement Points ... 2-4
Figure 2-4. Transmit Pulse Mask for DS3 Rates .. 2-5
Figure 2-5. Transmit Pulse Mask for STS-1 Rates .. 2-6
Figure 2-6. Transmit Pulse Mask for E3 Rate ... 2-7
Figure 2-7. AIS Signal ... 2-8
Figure 2-8. Minimum Jitter Tolerance Requirement 2-12
Figure 2-9. Maximum Jitter Transfer Curve Requirement 2-13
Figure 2-10. Remote Loopback Diagram ... 2-15
Figure 2-11. Local Loopback Diagram ... 2-16
Figure 2-12. CX2833i-1x Mechanical Drawing (80-Pin)—Dimensions 2-17
Figure 2-13. Timing Diagram ... 2-22
Figure 3-1. DS3/E3 Application Diagram ... 3-4
Figure B-1. Schematic Representation of the Package Components B-2
Figure B-2. Package and PCB Land Configuration ... B-3
Figure B-3. Internal Structure For a Two-Layer PCB B-5
Figure B-4. Internal Structure For a Six-Layer PCB .. B-5
Figure B-5. Test Performance Structure (A = 100 mm, B = 100 mm, \(L_P = 1.40 \) mm, \(L_B = 1.60 \) mm) .. B-6
Figure B-6. Package Thermal Resistance as a Function of Airflow Velocity for a 48-ETQFP Package .. B-7
Figure B-7. Package Thermal Resistance as a Function of Airflow Velocity for an 64 ETQFP ... B-8
Figure B-8. Package Thermal Resistance as a Function of Airflow Velocity for an 80 ETQFP ... B-8
Figure B-9. Typical IR Reflow Profile for Eutectic Sn63:Pb37 B-10
Figure B-10. Typical Forced Convection Reflow Profile for Eutectic Sn63:Pb37 ... B-11
Figure C-1. Power up sequence of VGG and VDD C-1
Figure C-2. Power-down sequence of VGG and VDD C-1
List of Tables

Table 1-1. CX2833i-1x Pin Definitions .. 1-5
Table 2-1. DS3 Transmit Template Specifications 2-5
Table 2-2. STS-1 Transmit Template Specifications 2-6
Table 2-3. RLOS Threshold Settings ... 2-10
Table 2-4. Absolute Maximum Ratings ... 2-18
Table 2-5. ESD Ratings ... 2-19
Table 2-6. Recommended Operating Conditions .. 2-19
Table 2-7. DC Characteristics ... 2-20
Table 2-8. AC Characteristics (Logic Timing) ... 2-21
Table B-1. Dimensional Parameters (mm) .. B-4
Table B-2. Specification for a Two-Layer Test Board B-6
Table B-3. Specification for a Four-Layer Test Board B-6
Table B-4. Specification for Delco Thermal Test Chips B-7
Table B-5. Test Conditions ... B-8
1.0 Pin Description

1.1 Pin Assignments

Figures 1-1 (CX28331-1x), 1-2 (CX28332-1x), and 1-3 (CX28333-1x) illustrate pin assignments for the 80-pin Exposed Thin Quad Flat Package (ETQFP). See Table 1-1 for the CX2833i-1x pin descriptions.

The input/output (I/O) column is coded as follows:

I = Input
O = Output
I/O = Bidirectional
P = Power

NOTE: All digital inputs and outputs contain 75 kΩ pull-down resistors.

When a channel is disabled (i.e., the PDx pin is tied low or not connected), all receive and transmit analog circuitry powers down. Analog inputs (RLINE) are ignored and analog outputs (TLINE) are high impedance. Digital inputs of a powered-down channel are still active, but ignored. Overall noise on the device can be lowered by not driving the digital inputs of a powered-down channel.

NOTE: When power is disconnected from the device, TLINE pins are low impedance to ground if driven by more than one forward-bias diode voltage (0.7 V) below ground. Additionally, driving TLINE, a forward-bias diode voltage above the VGG pin, creates a low impedance path from the TLINE pin to the VGG pin. Otherwise, the TLINE pins are high impedance.
1.0 Pin Description

1.1 Pin Assignments

Figure 1-1. CX28331-1x Pin Diagram
Figure 1-2. CX28332-1x Pin Diagram
Figure 1-3. CX28333-1x Pin Diagram
<table>
<thead>
<tr>
<th>Pin #</th>
<th>CX28331-1x</th>
<th>CX28332-1x</th>
<th>CX28333-1x</th>
<th>Signal Name</th>
<th>Description</th>
<th>I/O/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>—</td>
<td>6</td>
<td>6</td>
<td>RLINEP</td>
<td>Ch1 positive receive data</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>—</td>
<td>7</td>
<td>7</td>
<td>RLINE1N</td>
<td>Ch1 negative receive data</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>—</td>
<td>14</td>
<td>14</td>
<td>RLINE2P</td>
<td>Ch2 positive receive data</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>—</td>
<td>15</td>
<td>15</td>
<td>RLINE2N</td>
<td>Ch2 negative receive data</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>22</td>
<td>14</td>
<td>RLINE3P</td>
<td>Ch3 positive receive data</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>23</td>
<td>15</td>
<td>RLINE3N</td>
<td>Ch3 negative receive data</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>—</td>
<td>2</td>
<td>2</td>
<td>TLINEP</td>
<td>Ch1 positive transmit data</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>TLINE1P</td>
<td>Ch2 positive transmit data</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>—</td>
<td>18</td>
<td>10</td>
<td>TLINE1N</td>
<td>Ch3 negative transmit data</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>19</td>
<td>11</td>
<td>TLINE2P</td>
<td>Ch3 negative transmit data</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>18</td>
<td>11</td>
<td>TLINE3P</td>
<td>Ch3 positive transmit data</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>—</td>
<td>19</td>
<td>11</td>
<td>TLINE3N</td>
<td>Ch3 negative transmit data</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

Coaxial Line Pins

- **14** RLINEN: Ch1 negative receive data
- **22** RLINEN: Ch2 negative receive data
- **23** RLINEN: Ch3 negative receive data
- **10** TLINEP: Ch1 positive transmit data
- **11** TLINEE: Ch1 negative transmit data
- **18** TLINE2P: Ch2 positive transmit data
- **19** TLINE2N: Ch2 negative transmit data
- **18** TLINE3P: Ch3 positive transmit data
- **19** TLINE3N: Ch3 negative transmit data

Notes

- Differential inputs for each channel from its respective receive coax line. The RX expects balanced differential inputs, usually achieved using a 1:1 transformer. The inputs are internally DC biased to 1.9 V.
- Differential, coax-driver balanced outputs for pulse-shaped AMI B3ZS/HDB3 encoded waveforms for each channel. These pins should be connected to the primary side of the 1:1 transformer through two backmatch resistors, refer to Figure 3-1.
1.0 Pin Description

CX28331/CX28332/CX28333 (-1x)

1.1 Pin Assignments

Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit

Table 1-1. CX2833i-1x Pin Definitions (2 of 7)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Description</th>
<th>I/O/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>54</td>
<td>RPOS/ RNRZ</td>
<td>Ch1 receive Positive rail or NRZ data</td>
<td>O</td>
<td>Resynchronized receive data intended to be strobed out by the corresponding RCLK. When ENDECDIS = 1, these outputs are positive and negative AMI data (RPOS and RNEG). When ENDECDIS = 0, these outputs are decoded NRZ data (RNRZ) and line code violation (RLCV). A line code violation is indicated when RLCV = 1.</td>
</tr>
<tr>
<td>55</td>
<td>RNEG/ RLCV</td>
<td>Ch1 receive Negative rail or line code violation</td>
<td>O</td>
<td>See notes on the ENDECDIS pin in the Control Signals section.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>RCLK</td>
<td>Receive clock Ch1</td>
<td>O</td>
<td>Recovered clock for each channel receiver, intended for strobing the corresponding RDAT into the following framer or logic.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>TPOS/ TNRZ</td>
<td>Ch1 transmit Positive rail or NRZ data</td>
<td>I</td>
<td>Synchronized transmit data intended to be strobed in by the corresponding TCLK. When ENDECDIS = 1, these inputs are expected to be positive and negative AMI data (TPOS and TNEG). When ENDECDIS = 0, these inputs are expected to be uncoded NRZ data (TNRZ) and no connects (NC). See notes on the ENDECDIS pin in the Control Signals section.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TNEG/ NC</td>
<td>Ch1 transmit Negative rail or no connect data</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TNEG1/ NC1</td>
<td>Ch2 transmit Positive or NRZ data</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPOS2/ TNRZ2</td>
<td>Ch2 transmit Negative rail or no connect data</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TNEG2/ NC2</td>
<td>Ch3 transmit Positive or NRZ data</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TPOS3/ TNRZ3</td>
<td>Ch3 transmit Negative rail or no connect data</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

Mindspeed Technologies™
Mindspeed Proprietary and Confidential
1.1 Pin Assignments

Table 1-1. CX2833i-1x Pin Definitions (3 of 7)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Description</th>
<th>I/O/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>TCLK</td>
<td>Transmit clock Ch1</td>
<td>I</td>
<td>Transmit bit clock input for strobing with transmit data into the CX2833i.</td>
</tr>
<tr>
<td>—</td>
<td>TCLK1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>TCLK2</td>
<td>Transmit clock Ch2</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>TCLK3</td>
<td>Transmit clock Ch3</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>RLOS</td>
<td>Loss of signal Ch1</td>
<td>0</td>
<td>Loss Of Signal (LOS) indication for each channel, as determined by insufficient pulse density. Signal loss detected when (RLOS = 1). Loss of Signal is asserted and deasserted under conditions discussed in section 2.3.5</td>
</tr>
<tr>
<td>—</td>
<td>RLOS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>RLOS2</td>
<td>Loss of signal Ch2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>RLOS3</td>
<td>Loss of signal Ch3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Control Signals

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Description</th>
<th>I/O/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>59</td>
<td>ENDECDIS</td>
<td>Encoder/decoder disable (for all channels)</td>
<td>I</td>
<td>1 = Dual rail pulse coded data format. Input transmit data pins TPOS, TNRZ, TNEG and NC are interpreted as TPOS and TNEG (encoded positive and negative rail data). Output receive data pins RPOS and RNRZ, and RNEG and RLCV are interpreted as RPOS and RNEG, with RPOS having a positive pulse in place of every positive AMI pulse and RNEG having a negative pulse in place of every negative AMI pulse. 0 = NRZ format. Transmit data pins TPOS and TNEG are interpreted as TNRZ and NC (not connected). Receive data pins RPOS and RNEG are interpreted as RNRZ and RLCV. In this mode, all line code violations are reported as active high on RLCV.</td>
</tr>
<tr>
<td>—</td>
<td>TAIS</td>
<td>Transmit Ch1 AIS mode enable</td>
<td>I</td>
<td>Transmission of Alarm Indication Signal (AIS) for a given channel. Replace transmit data with AIS signal. The AMI form of AIS supported is alternating 1s. (+1, -1, +1, -1, +1, ...) AIS will overwrite data during local loopback. 1 = AIS mode enabled 0 = AIS mode disabled</td>
</tr>
<tr>
<td>—</td>
<td>TAIS1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>TAIS2</td>
<td>Transmit Ch2 AIS mode enable</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>TAIS3</td>
<td>Transmit Ch3 AIS mode enable</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>
1.0 Pin Description

1.1 Pin Assignments

Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit

CX2833-1x Pin Definitions (4 of 7)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>CX28331-1x</th>
<th>CX28332-1x</th>
<th>CX28333-1x</th>
<th>Signal Name</th>
<th>Description</th>
<th>I/O/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>E3MODE</td>
<td>E3MODE</td>
<td>I</td>
<td>When the pin is set to high, it enables the E3 mode on all channels, instead of the DS3/STS-1 mode. This also changes the pulse shaper to E3 mode and overrides all LBO pins. It also changes the encoder/decoder from B3ZS mode to HDB3 mode. 1 = E3 mode 0 = DS3/STS-1 mode</td>
</tr>
<tr>
<td>44</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>LBO</td>
<td>Transmit line Ch1 build-out mode</td>
<td>I</td>
<td>Line build-out mode per channel, based on the length of cable on the transmit side of the cross-connect block. This bit is overridden and the pulse shaper is disabled (no pulse shaping) if E3MODE = 1. 1 = Line build-out inserted into the transmit channel. Usually used when the transmit cable is less than 450 feet in length. 0 = Line build-out bypassed (not inserted). Usually used when the transmit cable is greater than 450 feet in length.</td>
</tr>
<tr>
<td>56</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>LLOOP</td>
<td>Local loopback enable Ch1</td>
<td>I</td>
<td>Local loopback enable per channel. The transmit data is looped back immediately from the encoder to the decoder in place of the received data. 1 = local loopback enabled 0 = local loopback disabled</td>
</tr>
<tr>
<td>57</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>RLOOP</td>
<td>Remote loopback enable Ch1</td>
<td>I</td>
<td>Remote loopback enable per channel. The receive data, retimed after clock recovery (not decoded), is looped back into the AMI generator in place of the transmit data. 1 = remote loopback enabled 0 = remote loopback disabled</td>
</tr>
<tr>
<td>45</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>XOE</td>
<td>Transmit output enable Ch1</td>
<td>I</td>
<td>Transmit output enable per channel. 1 = transmit line output driver enabled 0 = transmit output driver set to high impedance state</td>
</tr>
</tbody>
</table>

Mindspeed Technologies™
Mindspeed Proprietary and Confidential
Table 1-1. CX2833i-1x Pin Definitions (5 of 7)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Description</th>
<th>I/O/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>46</td>
<td>REQH</td>
<td>Ch1 Receive High EQ Gain Enable</td>
<td>I</td>
<td>The equalizer in the CX2833i has two gain settings. The higher gain setting is designed to optimally equalize a nominally-shaped (meets the pulse template), pulse-driven DS3 or STS-1 waveform that is driven through 0–900 feet of cable. Square-shaped pulses such as E3 or DS3-HIGH require less high-frequency gain and should use the low EQ gain setting.</td>
</tr>
<tr>
<td>70</td>
<td>REQH1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>REQH2</td>
<td>Ch2 Receive High EQ Gain Enable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>REQH3</td>
<td>Ch3 Receive High EQ Gain Enable</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

Power/Ground

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Description</th>
<th>I/O/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>TVDD</td>
<td>TX power Ch1</td>
<td>P</td>
<td>Power pins for transmit circuitry per channel (3.3 V).</td>
</tr>
<tr>
<td>4</td>
<td>TVDD1</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TVDD2</td>
<td>TX power Ch2</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TVDD3</td>
<td>TX power Ch3</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>TVSS</td>
<td>TX ground Ch1</td>
<td>P</td>
<td>Ground pins for transmit circuitry per channel.</td>
</tr>
<tr>
<td>1</td>
<td>TVSS1</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>TVSS2</td>
<td>TX ground Ch2</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>TVSS3</td>
<td>TX ground Ch3</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>RVDD</td>
<td>RX power Ch1</td>
<td>P</td>
<td>Power pins for receive circuitry per channel (3.3 V).</td>
</tr>
<tr>
<td>5</td>
<td>RVDD1</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>RVDD2</td>
<td>RX power Ch2</td>
<td>P</td>
<td>Connect to 3.3 V power.</td>
</tr>
<tr>
<td>21</td>
<td>RVDD3</td>
<td>RX power Ch3</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>RVSS</td>
<td>RX ground Ch1</td>
<td>P</td>
<td>Ground pins for receive circuitry per channel.</td>
</tr>
<tr>
<td>8</td>
<td>RVSS1</td>
<td></td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>RVSS2</td>
<td>RX ground Ch2</td>
<td>P</td>
<td>Connect to ground.</td>
</tr>
<tr>
<td>24</td>
<td>RVSS3</td>
<td>RX ground Ch3</td>
<td>P</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>DVDDC</td>
<td>Digital core power</td>
<td>P</td>
<td>Digital core power for all channels (3.3 V).</td>
</tr>
<tr>
<td>41</td>
<td>DVSSC</td>
<td>Digital core ground</td>
<td>P</td>
<td>Digital core ground for all channels.</td>
</tr>
<tr>
<td>79</td>
<td>VGG</td>
<td>5 V/3.3 V ESD pin 1</td>
<td>P</td>
<td>5 V supply for 5 V-tolerant, digital pad ESD diodes. No static power is drawn from pin.</td>
</tr>
<tr>
<td>73</td>
<td>DVDDIO</td>
<td>Digital I/O power</td>
<td>P</td>
<td>Connect to 3.3 V digital power.</td>
</tr>
<tr>
<td>28</td>
<td>DVSSIO</td>
<td>Digital ground</td>
<td>P</td>
<td>Digital ground.</td>
</tr>
</tbody>
</table>
Table 1-1. CX2833i-1x Pin Definitions (6 of 7)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Description</th>
<th>I/O/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4, 5, 20, 21</td>
<td>VDD</td>
<td>Power</td>
<td>P</td>
<td>Connect to 3.3 V power.</td>
</tr>
<tr>
<td>1, 8, 17, 24</td>
<td>VSS</td>
<td>Ground</td>
<td>P</td>
<td>Connect to ground.</td>
</tr>
</tbody>
</table>

Miscellaneous

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Description</th>
<th>I/O/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>REFCLK</td>
<td>Reference clock for Ch1</td>
<td>I</td>
<td>Reference clock from off-chip.</td>
</tr>
<tr>
<td>65</td>
<td>REFCLK1</td>
<td>Reference clock for Ch1</td>
<td>I</td>
<td>Reference clock from off-chip.</td>
</tr>
<tr>
<td>36</td>
<td>REFCLK2</td>
<td>Reference clock for Ch2</td>
<td>I</td>
<td>Reference clock from off-chip.</td>
</tr>
<tr>
<td>36</td>
<td>REFCLK3</td>
<td>Reference clock for Ch2</td>
<td>I</td>
<td>Reference clock from off-chip.</td>
</tr>
</tbody>
</table>

- **PD** Power down for Ch1
- **PD1** Power down for Ch2
- **PD2** Power down for Ch3
- **PD3** Power down for Ch3
- **REFCLK** Reference clock
- **REFCLK1** Reference clock
- **REFCLK2** Reference clock
- **REFCLK3** Reference clock
- **RBIAS** Bias resistor
- **Reset** Reset
- **GPD** Global Power Down

Note: A special power-down mode exists when all three PDBs are set low. This special mode shuts off the entire chip (including biasing). This is useful for static Idd testing.

The clock rate should correspond to the mode of operation that has been chosen for the channel. See Section 2.5.2, Power-On Reset, about the valid clock available during power-up.

A 12.1 kΩ ± 1% resistor tied from this pin to ground provides the current reference to the entire chip.

Asynchronous reset (reset entire device). Active-high input.

Power down (Static Idd testing).

Power down (Static Idd testing).

Global Power Down, when deasserted, places the device in a reset condition. See Section 2.5.2, Power-On Reset.
Table 1-1. CX2833i-1x Pin Definitions (7 of 7)

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Description</th>
<th>I/O/P</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2, 3, 6, 7, 18, 19, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58</td>
<td>10, 11, 14, 15, 42, 44–58</td>
<td>NC</td>
<td>No connect</td>
<td>Not connected.</td>
</tr>
</tbody>
</table>

Note(s):
1. This pin should be connected to 3.3 V in an all-3.3 V design.
2. Placing a capacitor from this pin to ground may result in instabilities.
3. All digital input pins contain a 75 kΩ pull-down resistor from input to DVSS.
1.0 Pin Description

1.1 Pin Assignments

Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
2.0 Functional Description

2.1 Overview

The CX28333 is a triple E3/DS3/STS-1 Line Interface Unit (LIU). It is the physical layer interface between the data framer (or other terminal-side equipment) and the electrical cable used for data transmission.

The CX28333 LIU consists of three independent data transceivers that can operate over type 734/728 coaxial cable at the rates of 34.368 Mbps (E3), 44.736 Mbps (DS3), and 51.84 Mbps (STS-1). The transmit side takes an NRZ or already-encoded dual rail input and encodes it into AMI B3ZS (for DS3/STS-1) or HDB3 (for E3) analog waveforms to be transmitted over 75 Ω coaxial cable. The receiver side takes in the attenuated and distorted analog receive signal and equalizes, slices, and resynchronizes the signal before decoding it to the NRZ output or sending out a non-decoded dual rail.

CX28331 and CX28332 are single- and dual-E3/DS3/STS-1 LIUs, respectively. In all respects, their performance and features are identical to the CX28333.

The architecture of the CX2833i includes the following internal functions for each channel:

Transmitter:

- AMI B3ZS/HDB3 encoder
- pulse shaper
- line driver
- Alarm Indication Signal (AIS) insertion

Receiver:

- receive sensitivity
- Automatic Gain Control (AGC)
- receive equalizer
- Clock Recovery circuit
- Loss Of Signal (LOS) detector
- B3ZS/HDB3 decoder with bipolar violation detector
- data squelching
2.0 Functional Description

2.1 Overview

Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit

Additional Functions:

- bias generator
- power-on reset
- loopback MUXes

In addition, each channel has the ability to perform remote and local loopbacks. Figure 2-1 illustrates a typical application using the CX2833i in a channel.

External pins are provided to configure the various line rates and formats for each channel.

The CX2833i is used as a data transceiver over a coaxial cable that is up to 900 feet long (or up to 450 feet from the DSX) in an on-premise environment within any public or private networks which use these data rates.

Figure 2-1. Typical Application Of Single CX2833i Channel
2.2 Transmitter

This section describes the detailed operation of the various blocks in the CX2833i transmitter.

2.2.1 AMI B3ZS/HDB3 Encoder

The ENDECDIS and E3MODE pins configure the encoder mode.

When ENDECDIS = 0, the encoder is receiving non-encoded Nonreturn to Zero (NRZ) data on the TNRZ (TPOS) pin alone, and the NC (no connect) (TNEG) pin is ignored.

Data is encoded into a representation of a three-level B3ZS (E3MODE = 0) or HDB3 (E3MODE = 1) signal before going on to the pulse shaper in the form of two binary signals representing the positive and negative three-level pulses.

When ENDECDIS = 1, the encoder is disabled. The encoder passes already-encoded data over TPOS (TNRZ) and TNEG (NC) to the pulse shaper.

The transmit digital data is clocked into the chip via a rising TCLK edge, which must be equal to the symbol rate (line rate). A small delay added to the data provides a certain amount of negative data hold time.

2.2.2 Pulse Shaper

The pulse shaper converts the two digital (clocked) positive and negative pulses into a single analog three-level Alternate Mark Inversion (AMI) pulse. The pulses are in Return to Zero (RZ) format, meaning that all positive and negative pulses have a duration of the first half of the symbol period.

For the E3 rate (E3MODE = 1), the AMI pulse is a full-amplitude, square-shaped pulse with very little slope.

Figure 2-2. Pulse Shaper
For DS3/STS-1 rates, a pulse-shaper block is used to shape the transmit waveform and reduce its high-frequency energy content. This ensures that the transmit pulse template is met at the cross-connect block, which follows 0–450 feet of transmit-side coaxial cable.

2.2.3 Line Driver

The differential line driver takes the filtered transmit waveform, increases it to the proper level, and drives it into the transmit magnetics. The two external discrete back-matching resistors (31.6 Ω) aid in line matching. The driver is presented with an approximately 150 Ω differential load. Driver gain accounts for the 6 dB gain loss in the back-matching resistors.

Figure 2-3. illustrates the Pulse/Power template measurement points for the various data rates.

Figure 2-3. Pulse Measurement Points
2.2.3.1 Transmit Pulse Mask Templates

The Transmit Pulse Mask characteristics of the CX2833i device are designed so that the transmitted output meets the Pulse Shape mask specified in ITU-T Recommendation G.703.

Figure 2-4. Transmit Pulse Mask for DS3 Rates

NOTE(S): An Isolated Pulse is a pulse preceded by at least two zeros and followed by one or more zeros. In judging the conformance of an isolated pulse to the mask, it is permissible to do the following:
1. Position the mask horizontally as necessary to encompass the pulse
2. Uniformly scale the amplitude of the isolated pulse to fit the mask

Table 2-1. DS3 Transmit Template Specifications

<table>
<thead>
<tr>
<th>Time Axis Range (UI)(^{(1)})</th>
<th>Normalized Amplitude Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Curve</td>
<td></td>
</tr>
<tr>
<td>(-0.85 \leq T \leq -0.68)</td>
<td>0.03</td>
</tr>
<tr>
<td>(-0.68 \leq T \leq 0.36)</td>
<td>0.03 + 0.5(1 + \sin \left(\frac{\pi}{2}(1 + T / 0.34)\right))</td>
</tr>
<tr>
<td>(0.36 \leq T \leq 1.4)</td>
<td>0.08 + 0.407 e(^{-1.84(T - 0.36)})</td>
</tr>
<tr>
<td>Lower Curve</td>
<td></td>
</tr>
<tr>
<td>(-0.85 \leq T \leq -0.36)</td>
<td>−0.03</td>
</tr>
<tr>
<td>(-0.36 \leq T \leq 0.36)</td>
<td>−0.03 + 0.5(1 + \sin\left(\frac{\pi}{2}(1 + T / 0.18)\right))</td>
</tr>
<tr>
<td>(0.36 \leq T \leq 1.4)</td>
<td>−0.03</td>
</tr>
</tbody>
</table>

\(^{(1)}\) UI = 1 / (System Clock Frequency)
NOTE(S): An Isolated Pulse is a pulse preceded by at least two zeros and followed by one or more zeros. In judging the conformance of an isolated pulse to the mask, it is permissible to do the following:
1. Position the mask horizontally as necessary to encompass the pulse
2. Uniformly scale the amplitude of the isolated pulse to fit the mask

Table 2-2. STS-1 Transmit Template Specifications

<table>
<thead>
<tr>
<th>Time Axis Range (UI)(^{(1)})</th>
<th>Normalized Amplitude Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Curve</td>
<td></td>
</tr>
<tr>
<td>(-0.85 \leq T \leq -0.68)</td>
<td>0.03</td>
</tr>
<tr>
<td>(-0.68 \leq T \leq 0.26)</td>
<td>(0.03 + 0.5 {1 + \sin[(\pi / 2)(1 + T / 0.34)]})</td>
</tr>
<tr>
<td>(0.26 \leq T \leq 1.4)</td>
<td>(0.1 + 0.61 e^{-2.4(T - 0.26)})</td>
</tr>
<tr>
<td>Lower Curve</td>
<td></td>
</tr>
<tr>
<td>(-0.85 \leq T \leq -0.36)</td>
<td>(-0.03)</td>
</tr>
<tr>
<td>(-0.36 \leq T \leq 0.36)</td>
<td>(-0.03 + 0.5 {1 + \sin[(\pi / 2)(1 + T / 0.18)]})</td>
</tr>
<tr>
<td>(0.36 \leq T \leq 1.4)</td>
<td>(-0.03)</td>
</tr>
</tbody>
</table>

\(^{(1)}\) UI = 1 / (System Clock Frequency)
2.2 Transmitter

Figure 2-6. Transmit Pulse Mask for E3 Rate
2.2.4 Alarm Indication Signal (AIS) Generator

When TAIS is asserted, an AIS replaces the transmit data at TPOS and TNEG. The E3 type of AIS signal (all 1s) is supported. In three-level signal form, this is a continuously alternating positive and negative pulse stream, as if the transmit data were a continuous string of logical 1s. Figure 2-7 illustrates the AIS signal.

The TAIS pin has the same data latency as the TX data pins and can be used to replace single symbols within a data stream. When the encoder is disabled (ENDECDIS = 1), the TAIS mode maintains the proper phase, based upon the polarity of the last 1 received.

The transmit AIS generator overwrites data during local loopback operation, it does not affect remote loopback operation.

Figure 2-7. AIS Signal

2.2.5 Jitter Generation (Intrinsic)

The CX2833i device meets the jitter generation requirements for various rates with large margins, with the condition that the input transmit clock (TCLK) is jitter-free. Data rates and jitter generation requirements are defined in the following documents:

- E3 rate—ETSI TBR24, ITU-T G.823 (Section 3.1.2)
- DS3 rate—Bellcore GR499, AT&T Accunet TR54014, ITU-T G.824
- STS-1 rate—Bellcore GR253
2.3 Receiver

This section describes the detailed operation of the various blocks in the CX2833i receiver.

2.3.1 Receive Sensitivity

The receiver recovers data from the coaxial cable that is attenuated due to the frequency-dependent characteristics of the cable. In addition, the receiver compensates for the flat loss (across all frequencies) in the various electrical components and the variation in transmitted signal power.

The CX2833i device is able to recover data that has been attenuated by a maximum of 900 feet of coax having characteristics and attenuation consistent with ANSI T1.102-1993, Annex C, Figure C.2. This approximates the characteristics of AT&T type 734/728 cable; almost the same attenuation characteristic is achieved by one-half the length of AT&T type 735 cable.

2.3.2 AGC/VGA Block

The Variable Gain Amplifier (VGA) receives the AMI input signal from the coaxial cable. The VGA supplies flat gain (independent of frequency) to make up for various flat losses in the transmission channel and for loss at one-half the symbol rate that cannot be made up by the equalizer. The VGA gain is controlled by a feedback loop which senses the amplitude of the equalizer output, acting to servo this amplitude for optimal slicing.

2.3.3 Receive Equalizer

The receive equalizer receives the differential signal from a VGA and boosts the high frequency content of the signal to reduce intersymbol interference (ISI) to the point that correct decisions can be made by the slicer with a minimum of jitter in the recovered data.

The REQH pin when set high (REQH = 1) boosts the amount of equalization in the receive side of the LIU. DS3/STS-1 pulses require a greater amount of equalization than standard E3 pulses. REQH is therefore normally set high (REQH = 1) for standard DS3/STS-1 pulses.

For cases where a square-shaped DS3/STS-1 pulse (that does not meet the DS3/STS-1 standards) is transmitted to the receiver REQH can be set low (REQH = 0).

In E3 mode, the REQH pin should always be set low (REQH = 0) to prevent over-equalization.
2.3.4 The PLL Clock Recovery Circuit

The clock recovery circuit (RX PLL) extracts the embedded clock from the sliced data and provides this clock and the retimed data to the decoder (data mode). Upon startup (after the internal reset is deasserted), the RX PLL uses a reference clock (REFCLK) and a phase-frequency detector to lock to the correct data rate (reference mode). During reference mode, the data outputs are squelched (set to 0). The RX PLL is kept in reference mode until a valid input is detected.

2.3.5 Loss Of Signal (LOS) Detector

The RLOS detector circuitry consists of two functional blocks: the analog section and the digital. The analog section consists of high-speed, low-offset comparators used for amplitude qualification. The digital block qualifies the pulse stream 1s density and zero run length.

<table>
<thead>
<tr>
<th>Table 2-3. RLOS Threshold Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
</tr>
<tr>
<td>RLOS Cleared</td>
</tr>
<tr>
<td>RLOS Declared</td>
</tr>
</tbody>
</table>

The digital block asserts RLOS when no valid pulses (per the analog section described above) have been received for 128 REFCLKs. The digital block clears the RLOS when the valid pulse density exceeds 20.3% with less than 64 consecutive zeros during an 128-symbol period.

2.3.6 B3ZS/HDB3 Decoder With Bipolar Violation Detector

In the CX2833i device, when ENDECDIS = 0 (encoder/decoder enabled), the decoder takes the output from the clock recovery circuit and decodes the data (HDB3 or B3ZS) into a single retimed NRZ data signal. The data signal is then sent out of the CX2833i over the RNRZ (RPOS) pin. Any detected Line Code Violations (LCV) are sent out over the corresponding RLCV (RNEG) pin. The RLCV pin is asserted for one symbol period at the time the violation appears on the RX output pin (RNRZ).

The following shows data sequence criteria for LCV; violations are indicated in bold text. A valid bipolar pulse is indicated by a B. A bipolar violation (non-alternating positive or negative) pulse is indicated by a V.

- Excessive zeros: 0, 0, 0, \(0\) (HDB3) or 0, 0, \(0\) (B3ZS). These violations are passed on as 0 data on the RNRZ pin.
- Bipolar violation: \(B, 0, V\) (i.e., \(+1, 0, +1\) or \(-1, 0, -1\) for HDB3) \(B, V\) (B3ZS and HDB3). These violations are passed on as 1 data on the RNRZ pin.
- Coding violation: 0, 0, \(V\) (HDB3) or 0, \(V\) (B3ZS) with an even number of Bs since the last valid 0 substitution V (follows coding rule). These violations are passed on as 0 data on the RNRZ pin.
The even/odd counter (used to count the number of Bs between Vs) will count a bipolar violation as a B. A coding violation or a valid 0 substitution resets the counter.

When ENDECDIS = 1, the decoder is disabled, and the retimed slicer outputs are sent out over RPOS (RNRZ) and RNEG (RLCV) pins. These outputs are then decoded by the Framer or other downstream device. Line code violations are not detected in this mode of operation. The decoder is configurable for either:

- E3 mode using HDB3 coding (E3MODE = 1)
- DS3/STS-1 mode using B3ZS coding (E3MODE = 0)

The receiver digital data outputs are centered on the rising edge of RCLK (see Section 2.9).

2.3.7 Data Squelching

A counter in the receiver keeps track of the number of consecutive symbol periods without a valid data pulse. When 128 or more 0s in a row are counted, the receiver assumes that it has lost the signal and resets itself to try and regain the signal. While the receiver is reacquiring the signal, the clock recovery block locks to the reference clock and the data squelching is achieved by forcing the data bits to zero. The data squelching is true in both NRZ and dual rail mode. When the input signal has been properly amplified and equalized, the clock recovery PLL will then switch to the incoming data.

2.4 Jitter Tolerance

The CX2833i receiver is able to tolerate a specified amount of high-frequency jitter in the received signal while providing error-free operation (generally defined as a bit error rate of less than 10^{-9}). The specifications (illustrated in Figure 2-9.) for jitter tolerance are discussed in the following documents:

- E3 rate – ITU-T G.823 and ETSI TBR24 contain frequency masks for input jitter tolerance.

NOTE: To meet jitter transfer requirements for loop-timed operation, an external jitter attenuator is required. The jitter attenuator lessens jitter from the receive clock.

- DS3 rate – Bellcore GR499 specifies jitter tolerance frequency masks for Category I and Category II interfaces.
- STS-1 rate – Bellcore GR253 specifies a jitter tolerance. It is noted that the STS-1 jitter tolerance differs from DS3 requirements only for Category II interfaces.
2.4 Jitter Tolerance

Figure 2-8. Minimum Jitter Tolerance Requirement

Receiver Jitter Tolerance

- T3 [GR-499 (1995)] Category II: 10 UI
- T3 [GR-499 (1995)] Category I: 5 UI
- E3 [GR.823 (1993)]: 1.5 UI
- CX28333 Jitter Tolerance: 0.3, 0.15, 0.1 UI

Input Jitter Amplitude

Jitter Frequency (Hz)

- 10 Hz
- 100 Hz
- 1 kHz
- 2.3 KHz
- 10 kHz
- 22.3 KHz
- 60 KHz
- 300 KHz
- 800 KHz
- 1 MHz
2.4.1 Jitter Transfer

The receiver must meet certain jitter transfer specifications between the input and output jitter as a function of frequency. These specifications are only intended to be met with the use of a jitter attenuator. Because the CX2833i does not contain a jitter attenuator, one will have to be supplied externally. For reference purposes, the specifications are discussed in the following documents and shown in Figure 2-9.

- E3 rate—Assume the same as DS3.
- DS3 rate—Bellcore GR499, section 7.3.2 and Figures 7-3, 7-4, and 7-5, defines and describes DS3 jitter transfer.
- STS-1 rate—Bellcore GR253, section 5.6.2.1, defines and describes jitter transfer for the STS-1 rate.

Figure 2-9. Maximum Jitter Transfer Curve Requirement

![Figure 2-9. Maximum Jitter Transfer Curve Requirement](image-url)
2.5 Additional CX2833i Functions

2.5.1 Bias Generator

To achieve good isolation between the channels, each channel utilizes an independent power and ground to both transmit and receive. Additionally, each channel has its own band gap voltage reference. Because only one external resistor for current generation exists, only one band gap voltage can be used. The band gap from Ch1 has been chosen for this task.

The 12.1 kΩ external resistor from pin RBIAS to ground, is specified to have a tolerance of ±1%. This helps to keep tighter control on power dissipation and circuit performance.

NOTE: Capacitance should be kept to a minimum on the RBIAS pin.

2.5.2 Power-On Reset (POR)

If the system cannot guarantee a valid REFCLK frequency input during the POR cycle, the CX2833i devices require assertion (active-high input pulse width, 1 µs minimum) of the external reset signal (RESET, Pin 78 [80-pin package], Pin 97 [100-pin package]). Valid operation frequencies are DS3 (44.768 MHz ±20 ppm), E3 (34.368 MHz ±20 ppm), and STS-1 (51.84 MHz ±20 ppm). Please refer to the **CX28331/2/3 Evaluation Module User Guide** for crystal oscillator specifications and vendor listings.

A POR circuit is provided in the CX2833i device to initialize all resettable digital logic and analog control lines. The POR circuit uses a fixed RC timer (~1µs) to deassert itself when the power supply voltage reaches a minimum level (~2 V). When the minimum supply voltage is reached (see Table 2-6), the REFCLK input is counted for 128 clocks before the internal reset is deasserted. At this time, the receiver block attempts to frequency lock (±5% tolerance) onto a valid incoming REFCLK input. After frequency lock is achieved, the receiver attempts to phase lock onto the valid RLINE receive signal.

NOTE: If a valid REFCLK input is not present when POR releases the internal reset, the receiver block may be unable to lock to the RLINE receive signal. It is common for some crystal oscillator types to oscillate at a lower fundamental frequency if the crystal oscillator supply has not reached its minimum operation voltage.

2.5.3 Loopback Multiplexers (MUXes)

Two loopback MUXes per channel in the CX2833i allow for local loopback (terminal or framer side), remote loopback (cable side), or both. The RLOS signal monitors the RX cable inputs irrespective of any loopback.

In remote loopback, set by asserting pin RLOOP high, the receive data (retimed after clock recovery but not decoded) loops back into the pulse shaper in place of the transmit data. Additionally, this data is sent out the RPOS, RNEG, and RCLK pins.
In local loopback, set by asserting pin LLOOP, the transmit data loops back immediately from the encoder output to the decoder input in place of the received data. Additionally, this data is sent out the TLINEP and TLINEM/N pins.

Figures 2-10 and 2-11 illustrate remote and local loopback flow.

NOTE: Transmit AIS operation overwrites data with an all 1’s pattern during local loopback, it does not affect remote loopback operation.

Figure 2-10. Remote Loopback Diagram
2.0 Functional Description

2.5 Additional CX2833i Functions

Figure 2-11. Local Loopback Diagram
2.6 Mechanical Specifications

Figure 2-12. CX2833i-1x Mechanical Drawing (80-Pin)—Dimensions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.20 MAX.</td>
<td>0.047 MAX.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A₁</td>
<td>0.05</td>
<td>0.15</td>
<td>0.002</td>
<td>0.006</td>
</tr>
<tr>
<td>A₂</td>
<td>0.95</td>
<td>1.05</td>
<td>0.040</td>
<td>0.041</td>
</tr>
<tr>
<td>D</td>
<td>15.75</td>
<td>16.25</td>
<td>0.620</td>
<td>0.640</td>
</tr>
<tr>
<td>D₁</td>
<td>13.90</td>
<td>14.10</td>
<td>0.547</td>
<td>0.555</td>
</tr>
<tr>
<td>D₂</td>
<td>12.35 REF.</td>
<td>0.486 REF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D₃</td>
<td>6.50 REF.</td>
<td>0.256 REF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.45</td>
<td>0.75</td>
<td>0.018</td>
<td>0.030</td>
</tr>
<tr>
<td>L₁</td>
<td>1.00 REF.</td>
<td>0.039 REF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.32 REF.</td>
<td>0.013 REF.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>0.09</td>
<td>0.20</td>
<td>0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>e</td>
<td>0.05 REF.</td>
<td>0.026 REF.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coplanarity | 0.10 MAX. | 0.004 MAX. |
Ref. 80-Pin ETQFP (GP00-D537)
2.7 Electrical Characteristics

2.7.1 Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVDDC/ RVDD/ TVDD/ VDD/ VGG</td>
<td>Power Supply Voltage</td>
<td>−0.3</td>
<td>6</td>
<td>V</td>
</tr>
<tr>
<td>VI</td>
<td>Voltage on Any Signal Pin</td>
<td>−1.0</td>
<td>VGG + 0.3 V</td>
<td>V</td>
</tr>
<tr>
<td>TST</td>
<td>Storage Temperature</td>
<td>−40</td>
<td>125</td>
<td>°C</td>
</tr>
<tr>
<td>TVSOL</td>
<td>Vapor Phase Soldering Temperature (1 min.)</td>
<td>—</td>
<td>220</td>
<td>°C</td>
</tr>
<tr>
<td>θJA</td>
<td>Thermal Resistance (Still air, socketed)</td>
<td>—</td>
<td>40</td>
<td>°C/W</td>
</tr>
<tr>
<td>θJA</td>
<td>Thermal Resistance (Still air, soldered)</td>
<td>—</td>
<td>24</td>
<td>°C/W</td>
</tr>
<tr>
<td>θJC</td>
<td></td>
<td>—</td>
<td>7.40</td>
<td>°C/W</td>
</tr>
<tr>
<td>FIT</td>
<td>Failures in time @ 89,000 device hours, temperature of 55 °C, 0 failures.</td>
<td>—</td>
<td>313</td>
<td>fits</td>
</tr>
</tbody>
</table>

NOTE(S):
1. Stresses above those listed as absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the other sections of this document is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
2.7.2 ESD Ratings

Testing Method—The devices were subjected to ESD events at the rated voltage with both positive and negative polarities relative to each other pin or supply domain on the device. The given pin was then curve-traced to detect leaky or shorted ESD diodes. The criterion for passing is 3 devices that withstand voltage without any leaky pins or functional failures.

<table>
<thead>
<tr>
<th>Model</th>
<th>Required Minimum</th>
<th>Observed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Body</td>
<td>1,000 V</td>
<td>2,000 V</td>
</tr>
<tr>
<td>Machine</td>
<td>100 V</td>
<td>200 V</td>
</tr>
<tr>
<td>Charged Device</td>
<td>400 V</td>
<td>700 V</td>
</tr>
</tbody>
</table>

2.7.3 Recommended Operating Conditions

Table 2-6 specifies various operating conditions, power supplies, and the bias resistor.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Nom</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power supply voltage (±5%)</td>
<td>DVDDC, RVDD, TVDD, VDD</td>
<td>3.135</td>
<td>3.3</td>
<td>3.465</td>
<td>V</td>
</tr>
<tr>
<td>ESD voltage(1, 2)</td>
<td>VGG</td>
<td>3.135</td>
<td>5</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>External bias resistor</td>
<td>Pin RBIAS to GND; ±1%</td>
<td>11.98</td>
<td>12.1</td>
<td>12.22</td>
<td>kΩ</td>
</tr>
</tbody>
</table>

NOTE(S):
(1) With 5 V logic input, VGG should be tied to 5 V. With 3.3 V logic input, VGG should be tied to 3.3 V. VGG must be equal or greater than power supply voltage.
(2) When VGG is operated at 5 V, sequence VGG to DVDDC, RVDD, TVDD, and VDD as discussed in Appendix C.
2.8 DC Characteristics

Table 2-7. DC Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Nom</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{ih} high threshold</td>
<td>Digital inputs (Logic 1)</td>
<td>2.0</td>
<td>—</td>
<td>$V_{GG} + 0.3$</td>
<td>V</td>
</tr>
<tr>
<td>V_{il} low threshold</td>
<td>Digital inputs (Logic 0)</td>
<td>-0.3</td>
<td>—</td>
<td>0.8</td>
<td>V</td>
</tr>
<tr>
<td>V_{oh} high threshold</td>
<td>Digital outputs, $I_{oh} = -4$ mA</td>
<td>2.4</td>
<td>—</td>
<td>—</td>
<td>V</td>
</tr>
<tr>
<td>V_{ol} low threshold</td>
<td>Digital outputs, $I_{ol} = 4$ mA</td>
<td>—</td>
<td>—</td>
<td>0.4</td>
<td>V</td>
</tr>
<tr>
<td>I_{LEAK} (digital inputs and outputs)</td>
<td>0 V ≤ digital Vin ≤ V_{GG}</td>
<td>-10</td>
<td>—</td>
<td>200</td>
<td>μA</td>
</tr>
<tr>
<td>I_{LEAK} (analog inputs and outputs)</td>
<td>R_{LINEP}, R_{LINEM}, T_{LINEP}, T_{LINEM}</td>
<td>-270</td>
<td>—</td>
<td>270</td>
<td>μA</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>pF</td>
</tr>
<tr>
<td>Load capacitance</td>
<td>Digital outputs</td>
<td>—</td>
<td>—</td>
<td>15</td>
<td>pF</td>
</tr>
<tr>
<td>R_{LINE}/T_{LINE} capacitance</td>
<td>Maximum load</td>
<td>—</td>
<td>—</td>
<td>50</td>
<td>pF</td>
</tr>
</tbody>
</table>

Power Dissipation

Power dissipation	Total chip3	—	0.83	1.0	W
Power dissipation (CX28332)	Total chip	—	—	0.8	W
Power dissipation (CX28331)	Total chip	—	—	0.450	W

NOTE(S):

1. The digital inputs of CX2833i are TTL 5 V compliant when $V_{GG} = 5$V. These inputs are diode protected to the V_{GG} pin. Additionally, all of the CX2833i digital inputs contain 75 kΩ pull-down resistors.
2. The digital outputs of CX2833i are also TTL 5 V compliant when $V_{GG} = 5$V. However, these outputs do not drive to 5 V, nor do they accept 5 V external pull-ups.
3. Measured while transmitting and receiving all-1s pattern.
2.9 AC Characteristics

Table 2-8. AC Characteristics (Logic Timing)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Nom</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tosym, Tisym RCLK and TCLK</td>
<td>E3 (34.368 MHz)</td>
<td>—</td>
<td>29.10</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>DS-3 (44.736 MHz)</td>
<td>—</td>
<td>22.35</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>STS-1 (51.84 MHz)</td>
<td>—</td>
<td>19.29</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Clock Duty Cycle</td>
<td>Twidth/Tosym, RCLK</td>
<td>45</td>
<td>—</td>
<td>55</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Tiwidth/Tisym, TCLK</td>
<td>40</td>
<td>40</td>
<td>60</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td>Tiwidth/Tisym, REFCLK</td>
<td>40</td>
<td>—</td>
<td>60</td>
<td>%</td>
</tr>
<tr>
<td>Todelay</td>
<td></td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>ns</td>
</tr>
<tr>
<td>Tistopup</td>
<td>TPOS/TNRZ, TNEG, TAIS</td>
<td>4</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
<tr>
<td>Tihold</td>
<td>TPOS/TNRZ, TNEG, TAIS</td>
<td>0</td>
<td>—</td>
<td>—</td>
<td>ns</td>
</tr>
</tbody>
</table>

NOTE(S):
1. The description applies to the DS3, E3, and STS-1 clock rates and other parameters such as pulse width, set-up time, hold time, and duty cycle.
2. The timing diagram, illustrated in Figure 2-13., describes the logical relationship between various clock and data signals, and parameter values.
3. Todelay is measure with a 10–15 pF loading characteristic.
Figure 2-13. Timing Diagram

![Timing Diagram]

- **DATA OUTPUTS**
 - RCLK
 - TPOS/RNRZ, RNEG/RLCV
 - Tdelays
 - Twidths

- **DATA INPUTS**
 - TCLK
 - TPOS/TNRZ, TNEG, TAIS,
 - Tisets
 - Tiholds

- **DATA INPUTS**
 - Tisym
 - Tisetup
 - Tihold

- **DATA OUTPUTS**
 - Tosym
 - Twidth

- **Valid Data**
- **Don't Care**

Mindspeed Proprietary and Confidential
3.0 Applications

The CX28331/CX28332/CX28333 can be used in a variety of applications.

Figure 3-1 illustrates an example of three DS3 lines being terminated by the CX28333. The data and clock are extracted and passed on to the framer chip for further data manipulation and user interface.

It is important to employ high-frequency design techniques for the printed board layout.

3.1 PCB Design Considerations for the CX2833i

The CX28333 device is a mixed signal triple-port LIU device operating at frequencies up to 51.84 MHz. This calls for a careful design of the PCB layout. Some design considerations are outlined below.

3.1.1 Power Supply and Ground Plane

A single power plane with bulk capacitors (typically 10 µf) distributed throughout the board will mitigate most power rail-related voltage transients. A bulk capacitor should also be placed where the power enters the board. It is recommended that decoupling capacitors be routed directly to each of the power pins. It is recommended that 0.1 µf, 0.01 µf, and 0.001 µf decoupling capacitors be used. All three values are not required on each pin, but values should be dispersed uniformly to filter different frequencies of noise. 10 µf tantalum capacitors should be placed on all four corners of the chip.

A continuous ground plane is the best way to minimize ground impedance. Most ground noise is produced by the return currents and power supply transients during switching. This effect is minimized by reducing the ground plane impedance.

3.1.2 Component Placement

3.1.2.1 RBIAS Resistor

It is important to keep the RBAIS pins quiet, as any noise coupled to these pins affect the internal references. The RBAIS resistors should be placed as close as possible to the RBAIS pins and no digital signals should be routed near the pins or the resistors. It is recommended to guard the pin, resistor, and traces with ground vias.
3.0 Applications

3.1 PCB Design Considerations for the CX2833i

3.1.2.2 VGG Decoupling
It is recommended that the VGG pin be decoupled with a 0.1 µf, 0.01 µF and 0.001 µf capacitors. These capacitors should be placed close to the VGG pin.

3.1.2.3 Termination Resistors and Capacitors
The termination resistors and capacitors on the receive RLINE pins should be placed as close the receiver input on the chip as possible. The series resistors for the transmit TLINE pins should also be placed as close to the transmitter output pins as possible, but are less of a priority then the RLINE.

3.1.3 Impedance Matching
It is critical that both the transmit and receive traces around the transformers and the matching resistors be kept to a minimum length and that the trace impedance be matched to 75 ohms.

The transmit signals between the device and the transformer should be routed 75 ohm differentially. The transmit signals should be routed single ended between the transformer and the BNC connector.

The receive signals should be routed differentially between the transformers and either differentially or single ended from the transformers to the BNC connectors, depending on the application. If the application requires ground termination it is recommended that the signals be routed single ended. If the application does not require ground termination, then the signals can be routed differentially.

To route signals differentially, the signal pair (positive and negative) should be 75 ohm coupled and should be surrounded by solid power/ground planes (buried strip line) or be coupled to a power/ground plane (microstrip). Buried strip line is recommended for internal layers while microstrip line is used for signals routed on surface layers. There should be no discontinuity in the planes during the path of the signal traces.

Single ended signals should be 75 ohm coupled between power/ground planes for inner layers or 75 ohm coupled to a power/ground plane on the outer layers. There should be no discontinuities in the power/ground planes over the trace path. Impedance discontinuities occur when a signal passes through vias and travels between layers. It is recommended to minimize the number of vias and layers that the transmit/receive signals travel through in the design.

3.1.4 Other Passive Parts
Mindspeed recommends the use of 1:1 transformers for coupling the BNC connectors to the device. The CX28333 uses six Pulse T3001 transformer devices to handle the 3 Tx and 3 Rx channels.

It is recommended that a 220 µF tantalum capacitor be used where the power enters the board.

3.1.5 IBIS Models
IBIS (Input/Output Buffer Interface Specification) models for the CX28331/CX28332/CX28333-1x are available from Mindspeed’s web site (www.mindspeed.com).
3.1.6 Recommended Vendors

<table>
<thead>
<tr>
<th>Location</th>
<th>Product: Transformers</th>
<th>Product: Crystals</th>
</tr>
</thead>
<tbody>
<tr>
<td>America</td>
<td>Pulse</td>
<td>Crystek Corp.</td>
</tr>
<tr>
<td>Address:</td>
<td>Corporate Office</td>
<td>12730 Commonwealth Drive</td>
</tr>
<tr>
<td></td>
<td>12220 World Trade Drive</td>
<td>Fort Myers, FL 33913</td>
</tr>
<tr>
<td></td>
<td>San Diego, CA 92128</td>
<td></td>
</tr>
<tr>
<td>Telo:</td>
<td>858-674-8100</td>
<td>800-237-3061</td>
</tr>
<tr>
<td>Fax:</td>
<td>858-674-8262</td>
<td>941-561-1025</td>
</tr>
<tr>
<td>E-mail:</td>
<td></td>
<td>sales@crystek.com</td>
</tr>
<tr>
<td>Web site:</td>
<td></td>
<td>www.crystek.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Northern Asia</th>
<th>Pulse</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>3F-4, No. 81, Sec. 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hsin Tai Wu Road</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hsi-Chih</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Taipei Hsien, Taiwan</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R.O.C.</td>
<td></td>
</tr>
<tr>
<td>Telo:</td>
<td>886-2-26980228</td>
<td></td>
</tr>
<tr>
<td>Fax:</td>
<td>886-2-26980948</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Northern Europe</th>
<th>Pulse</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Telo:</td>
<td>44-1483-401700</td>
<td></td>
</tr>
<tr>
<td>Fax:</td>
<td>44-1483-401701</td>
<td></td>
</tr>
</tbody>
</table>
Figure 3-1. DS3/E3 Application Diagram

NOTE(S):
1. All transformers are part number T3001 from Pulse Technology. See Recommended Vendors, Section 3.1.6.
Appendix A: Applicable Standards

The applicable standards documents are as follows:

- **ANSI T1.102-1993** (DS3 and STS-1 standard)
- **ANSI T1.404a-1996** (DS3 metallic interface)
- **ITU Recommendation G.703** (DS3 and E3 standard)
- **ITU Recommendation G.823 and G.824** (jitter and wander)
- **Bellcore GR499**, Issue 1, 12/89 (formerly TR-TSY-000499) (DS3 and STS-1 requirements)
- **Bellcore GR253**, Issue 2, 12/91 (formerly TA-NWT-000253) (STS-1 Requirements and Jitter)
- **Bellcore TR-TSY-000191**, Issue 1, 5/86 (AIS and LOS)
- **ETSI TBR24** and **TBR25** (E3 terminal equipment interface)
- **ETSI ETS 300 686 and ETS 300 687** (E3 standard)
- **ETSI ETS 300 687, 1996**, “Business Telecommunications; 34 Mbps Digital Leased Lines (D34U and D34S); Connection Characteristics”
- **ETSI ETS 300 686, 1996**, “Business Telecommunication; 34 Mbps and 140 Mbps digital Leased Lines (D34U, D34S, D140U, and D140S); Network Interface presentation”
- **ANSI T1.102-1993**, “Digital Hierarchy—Electrical Interfaces”
- **ANSI T1.231-1993**, “Digital Hierarchy—Layer 1 In-Service Digital Transmission Performance Monitoring”
- **ITU Recommendation G.823, 1993**, “The Control of Jitter and Wander Within Digital Networks Which are Based on the 2,048 kbps Hierarchy”
- **ITU Recommendation O.151, 1992**, “Error Performance Measuring Equipment Operating at the Primary Rate and Above”
- **ETSI TBR 24, 1997**, “Business Telecommunication; 34 Mbps Digital Unstructured and Structured Lease Lines; Attachment Requirements for Terminal Equipment Interface”
Appendix B: Exposed Thin Quad Flat (ETQFP) Pack

NOTE: Mindspeed recommends that the exposed paddle on the CX2833i-1x be soldered to the ground side of the PCB for reasons described below. Do not route PCB traces or vias under the exposed paddle area of the CX2833i-1x device.

The Exposed Thin Quad Flat Pack (ETQFP) package provides greater design flexibility and increased thermal efficiency, while using a standard size IC package. The exposed pad improves performance by permitting higher clock speeds, more compact systems, and a more aggressive design criteria. ETQFP thermal performance is better than standard packages; however, to make optimum use of the thermal efficiencies designed into the ETQFP, the PCB must be designed with this package in mind. The following sections of this document provide more information regarding the thermal performance and PCB design for Mindspeed ETQFPs.
B.1 Introduction

The ETQFP is implemented using a standard epoxy-resin package mold compound. The integrated circuit die is attached to the lead-frame die pad with a thermally conductive epoxy. The leadframe is designed with a deep downset of the die attach pad so it will be exposed on the bottom surface of the package after mold. This provides an extremely low thermal resistance between the IC junction and the exterior of the surface.

The die pad’s external surface can be attached to the PCB using standard solder reflow techniques. This allows efficient attachment to the board, and permits the board structure to be used as a heat sink for the IC. Using thermal vias, the lead frame die pad can be attached to a ground plane or special heat sink structure designed into the PCB. Figure B-1 illustrates the schematic of the package components.

Figure B-1. Schematic Representation of the Package Components
B.2 Package Thermal Characterization

B.2.1 Heat Removal Path

The internal heat removal path is designed to transfer heat from the top surface of the die to the die pad and then directly to the Printed Circuit Board (PCB) through a center solder pad. The PCB must have features designed to remove heat from the package efficiently. At a minimum, there must be an area of solder-tinned copper underneath the ETQFP, called a thermal land. Heat is transferred from the thermal land to the environment through thermal vias designed within the PCB structure.

B.2.2 Thermal Lands

A thermal land is required on the surface of the PCB directly under the body of the exposed package. During normal surface mount reflow, the exposed pad on the underside of the package will be soldered to this thermal land creating an efficient thermal path. The size of the thermal path is as large as needed to dissipate the required heat.

For double-sided PCBs having no internal layers, the surface layers must be used to remove heat. Figure B-2 illustrates a sample package detail, including the required solder mask and thermal land pattern for an ETQFP. The designer may consider external means of heat conduction, such as attaching the copper planes to a convenient chassis member or other hardware convection.

Figure B-2. Package and PCB Land Configuration
An array of 0.33 mm diameter thermal vias plated with 1 oz. copper must be placed on the pad and shorted to the PCB’s ground plane. If the plating thickness in the exposed region of the center pad is not sufficient to effectively plug the barrel of the via when plated, use solder mask to cap the vias; the mask diameter should have a dimension equal to the via diameter + 0.1 mm minimum. This prevents the solder from wicking through the thermal via, potentially creating a solder void in the region between the package bottom and the center pad on the surface of the PCB. Table B-1 lists the dimensions for the entire ETQFP package family.

<table>
<thead>
<tr>
<th>Package Type</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>N(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>48-lead ETQFP</td>
<td>5.40</td>
<td>5.40</td>
<td>0.50</td>
<td>0.25</td>
<td>1.00</td>
<td>4.70 sq.</td>
<td>3 x 3; 9</td>
</tr>
<tr>
<td>80-lead ETQFP</td>
<td>14.40</td>
<td>14.40</td>
<td>0.65</td>
<td>0.35</td>
<td>1.00</td>
<td>6.50 sq.</td>
<td>7 x 7; 49</td>
</tr>
<tr>
<td>100-lead ETQFP</td>
<td>14.40</td>
<td>14.40</td>
<td>0.50</td>
<td>0.25</td>
<td>1.00</td>
<td>8.00 sq.</td>
<td>7 x 7; 49</td>
</tr>
</tbody>
</table>

NOTE(S):
(1) N represents the total number of thermal vias to be placed evenly across the entire PCB center pad. In the case of the 48-lead ETQFP, all thermal vias are located within the exposed region of the center pad.
B.2.3 PCB Design

Thermal vias are the primary method of heat transfer from the PCB thermal land to the internal copper planes or to other heat removal sinks. The number, size, and construction of the vias is important in obtaining the best package thermal performance and package/PCB assembly. Thermal performance analysis indicates there is a point of diminishing returns where additional vias will not improve heat transfer through the board.

The PCB internal structure plays a very important role in package thermal performance. Figures B-3 and B-4 illustrate the PCB structure for a two- and six-layer design, respectively. PCB designs with more than two layers should have all thermal vias connected to the ground plane.

Figure B-3. Internal Structure for a Two-Layer PCB

![Internal Structure for a Two-Layer PCB](image1)

Figure B-4. Internal Structure For a Six-Layer PCB

![Internal Structure For a Six-Layer PCB](image2)
B.2.4 Thermal Test Structure

B.2.4.1 Test Environment
Package thermal performance has been tested following JEDEC standards. The ETQFP package is mounted at the center of a 100 mm × 100 mm, six layer test board and is tested under different air flow velocities. Figure B-5 illustrates the system configuration.

Figure B-5. Test Performance Structure (A = 100 mm, B = 100 mm, L_p = 1.40 mm, L_B = 1.60 mm)

B.2.4.2 Thermal Test Boards
Two different test boards have been used to evaluate package thermal performance for both worst and best conditions. Table B-2 lists specifications of these test boards.

Table B-2. Specification for a Two-Layer Test Board

<table>
<thead>
<tr>
<th>Drawing Number</th>
<th>TR03-T1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Material</td>
<td>FR-4</td>
</tr>
<tr>
<td>Thickness</td>
<td>1.6 mm</td>
</tr>
<tr>
<td>Stackup (signal layers, Cu planes)</td>
<td>1S0P</td>
</tr>
<tr>
<td>Cu Coverage (signal layer—top/bottom)</td>
<td>10%</td>
</tr>
<tr>
<td>Cu Coverage (power/ground layer)</td>
<td>100%</td>
</tr>
<tr>
<td>Inner Cu Thickness (spec)</td>
<td>35 x 3.5</td>
</tr>
</tbody>
</table>

Table B-3. Specification for a Four-Layer Test Board

<table>
<thead>
<tr>
<th>Drawing Number</th>
<th>TR03-T2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Material</td>
<td>FR-4</td>
</tr>
<tr>
<td>Thickness</td>
<td>1.6 mm</td>
</tr>
<tr>
<td>Stackup (signal layers, Cu planes)</td>
<td>1S2P</td>
</tr>
<tr>
<td>Cu Coverage (signal layer—top/bottom)</td>
<td>10%</td>
</tr>
<tr>
<td>Cu Coverage (power/ground layer)</td>
<td>100%</td>
</tr>
<tr>
<td>Inner Cu Thickness (spec)</td>
<td>35 x 3.5</td>
</tr>
</tbody>
</table>
B.2.5 Package Thermal Performance

B.2.5.1 Calculation Guidelines

Maximum junction temperature can be calculated as:

$$T_j = P \times \theta_{ja} + T_a$$

Where:

- θ_{ja} = Equivalent Package Thermal Resistance (C/W)
- T_j = Maximum Junction Temperature (C)
- T_a = Ambient Temperature (C)
- P = Package Total Power Dissipation Value (W)

B.2.5.2 Package Thermal Resistance

Delco thermal test chips are used to estimate package thermal performance. Table B-4 lists thermal die specifications.

Table B-4. Specification for Delco Thermal Test Chips

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>3.81 mm x 3.81 mm</th>
<th>6.35 mm x 6.35 mm</th>
<th>7.8 mm x 7.8 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness</td>
<td>0.33 mm</td>
<td>0.45 mm</td>
<td>0.5 mm</td>
</tr>
</tbody>
</table>

Figure B-6 illustrates package thermal resistance as a function of airflow velocity for a 48-pin ETQFP package using two different test boards, specified in Tables B-2 and B-3, and a prediction for a six-layer PCB design. Figures B-7 and B-8 illustrate the similar information for a 64- and 80-pin ETQFP package. Table B-5 lists the test condition for each package type.
Appendix B: Exposed Thin Quad Flat (ETQFP) Pack

B.2 Package Thermal Characterization

Table B-5 lists the test conditions for Figures B-6 through B-8.

<table>
<thead>
<tr>
<th>Package Type:</th>
<th>48 EQTFP</th>
<th>64 ETQFP</th>
<th>80 ETQFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Size</td>
<td>7 mm x 7 mm</td>
<td>10 mm x 10 mm</td>
<td>14 mm x 14 mm</td>
</tr>
<tr>
<td>Die Size</td>
<td>3.81 mm x 3.81 mm</td>
<td>6.35 mm x 6.35 mm</td>
<td>7.8 mm x 7.8 mm</td>
</tr>
<tr>
<td>Die Pad Size</td>
<td>5 mm x 5 mm</td>
<td>7.50 mm x 7.50 mm</td>
<td>9.50 mm x 9.50 mm</td>
</tr>
</tbody>
</table>

Figure B-7. Package Thermal Resistance as a Function of Airflow Velocity for an 64 ETQFP

Figure B-8. Package Thermal Resistance as a Function of Airflow Velocity for an 80 ETQFP
B.3 Solder Stencil Determination

Use the thickest possible solder mask, consistent with the components being assembled to the PWB surface mount process. A standoff height of 2.0–4.2 mils provides good solder joints for both the leads and the center pad. This is achieved using a stencil thickness of 5, 6, or 7 mils.

B.4 Solder Reflow Profile

The ETQFP uses the standard TQFP reflow profile because the ETQFP package construction does not add thermal mass. There is minimal additional thermal load due to the increased solder area between the exposed die pad on the package and the center pad on the PCB. Figures B-9 and B-10 illustrate typical IR reflow profiles for Sn63:Pb37 solder in the cases of natural convection and forced convection ovens.
Figure B-9. Typical IR Reflow Profile for Eutectic Sn63:Pb37

NOTE(S):
Peak temperature should be approximately 220 °C, and the exposure time should normally be less than 1.0 minutes at temperature above 183 °C.
Peak temperature should be approximately 235 °C, and the exposure time should normally be less than 1.2 minutes at temperature above 183 °C. Belt Speed = 30 inches/minute (top and bottom setting), FAN SPEED = 2500 RPM, NITROGEN LEVEL = 1200 SCFH.
Appendix B: Exposed Thin Quad Flat (ETQFP) Pack

B.4 Solder Reflow Profile

Single/Dual/Triple E3/DS3/STS-1 Line Interface Unit
Appendix C: Power Sequencing

When VGG is operated at 5V, use the power-up and power-down sequencing between VGG and VDD (DVDDC, RVDD, TVDD, VDD) as described in the diagrams below (See note below).

NOTE: VGG can exceed VDD by up to 5V (+10%) for short durations of less than 10 ms. VGG must never be less than VDD by more than 0.5V.

- **Figure C-1. Power-up sequence of VGG and VDD.**
 - VGGmax
 - VDD
 - VGGmin
 - VSS
 - 3.6V Max.
 - 3.6V Max.
 - 0.5V Max.
 - 0.5V Max.
 - 3.6V Max.
 - 3.6V Max.
 - 5.5V Max.
 - Time

- **Figure C-2. Power-down sequence of VGG and VDD.**
 - VGGmax
 - VDD
 - VGGmin
 - VSS
 - 5.5V Max.
 - 3.6V Max.
 - 0.5V Max.
 - 0.5V Max.
 - 3.6V Max.
 - 3.6V Max.
 - 5.5V Max.
 - Time